Theo Manuel Jenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/871166/publications.pdf

Version: 2024-02-01

38 papers 2,278 citations

394421 19 h-index 36 g-index

66 all docs

66
docs citations

66 times ranked 3198 citing authors

#	Article	IF	CITATIONS
1	Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile. Science of the Total Environment, 2022, 833, 155068.	8.0	8
2	A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 2022, 16, 1997-2008.	3.9	2
3	Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction. Cryosphere, 2021, 15, 1537-1550.	3.9	10
4	Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene. Cryosphere, 2021, 15, 2109-2114.	3.9	11
5	Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core. Cryosphere, 2021, 15, 4135-4143.	3.9	7
6	Alpine Glacier Reveals Ecosystem Impacts of Europe's Prosperity and Peril Over the Last Millennium. Geophysical Research Letters, 2021, 48, e2021GL095039.	4.0	8
7	Temperature Trends in the Northwestern Tibetan Plateau Constrained by Ice Core Water Isotopes Over the Past 7,000 Years. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032560.	3.3	43
8	Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier,ÂWashington State, USA, as Reconstructed From aÂ158â€mâ€Long Ice Core. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031126.	3.3	9
9	Application of the radionuclide ²¹⁰ Pb in glaciology – an overview. Journal of Glaciology, 2020, 66, 447-456.	2.2	11
10	Apparent discrepancy of Tibetan ice core & amp; t; > & t; > & amp; t; > & amp; t; >& t; sup> & amp;gt; & attributed to misinterpretation of chronology. Cryosphere, 2019, 13, 1743-1752.	3.9	23
11	A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia. Climate of the Past, 2019, 15, 579-592.	3.4	29
12	Extraction of Dissolved Organic Carbon from Glacier Ice for Radiocarbon Analysis. Radiocarbon, 2019, 61, 681-694.	1.8	4
13	19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere, 2018, 12, 3311-3331.	3.9	64
14	Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 2018, 12, 2341-2348.	3.9	36
15	CO ₂ , <i>l`</i> ¹³ C-CO _{and &:lt:i&:gt:l`&:lt:/i&:gt:&:lt:sup&:gt:18&:lt:/sup&:gt:O-CO&:lt:sub&:gt;}	0.1	J
16	on small ice core samples. Atmospheric Measurement Techniques, 2016, 9, 3687-3706. Age of the Mt.ÂOrtles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere, 2016, 10, 2779-2797.	3.9	43
17	Radiocarbon dating of glacier ice: overview, optimisation, validation and potential. Cryosphere, 2016, 10, 3091-3105.	3.9	33
18	210Po poisoning as possible cause of death: forensic investigations and toxicological analysis of the remains of Yasser Arafat. Forensic Science International, 2016, 259, 1-9.	2.2	6

#	Article	IF	CITATIONS
19	Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice. Environmental Science & Environmental Science & 2015, 49, 14085-14091.	10.0	23
20	Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001. Climate of the Past, 2014, 10, 1093-1108.	3.4	18
21	Polychlorinated Biphenyls in Glaciers. 1. Deposition History from an Alpine Ice Core. Environmental Science & Environmental Sc	10.0	33
22	Corrigendum to "Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland" published in Atmos. Chem. Phys., 12, 4259–-4277, 2012. Atmospheric Chemistry and Physics, 2014, 14, 3571-3572.	4.9	2
23	A new thermal drilling system for high-altitude or temperate glaciers. Annals of Glaciology, 2014, 55, 131-136.	1.4	14
24	A revised 1000 year atmospheric <i>δ</i>¹³ C O ₂ record from Law Domand South Pole, Antarctica. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8482-8499.	^૧ 8.૩	171
25	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	27.8	565
26	An automated GC-C-GC-IRMS setup to measure palaeoatmospheric Î ¹³ C-CH ₄ , Î ¹⁵ N-N ₂ O and Î ₂ O in one ice core	3.1	14
27	sample. Atmospheric Measurement Techniques, 2013, 6, 2027-2041. ICE CORE METHODS CO 2 Studies. , 2013, , 311-318.		1
28	A combustion setup to precisely reference l' ¹³ C and l' ² H isotope ratios of pure CH ₄ to produce isotope reference gases of l' ¹³ C-CH ₄ in synthetic	3.1	11
29	air. Atmospheric Measurement Techniques, 2012, 5, 2227-2236. Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmospheric Chemistry and Physics, 2012, 12, 4259-4277.	4.9	130
30	A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of Geophysical Research, 2009, 114 , .	3.3	77
31	Analysis of delta-13C in CO2 at Copenhagen University: Results towards a first CO2 record from Greenland. IOP Conference Series: Earth and Environmental Science, 2009, 6, 012025.	0.3	0
32	Microgram level radiocarbon (14C) determination on carbonaceous particles in ice. Nuclear Instruments & Methods in Physics Research B, 2007, 259, 518-525.	1.4	47
33	Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by14C. Journal of Geophysical Research, 2006, 111, .	3.3	330
34	A first shallow firn-core record from Glaciar La Ollada, Cerro Mercedario, central Argentine Andes. Annals of Glaciology, 2006, 43, 14-22.	1.4	15
35	Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmospheric Chemistry and Physics, 2006, 6, 5381-5390.	4.9	105
36	THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nuclear Instruments & Methods in Physics Research B, 2004, 223-224, 829-836.	1.4	87

#	Article	IF	CITATIONS
37	Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmospheric Environment, 2004, 38, 4035-4044.	4.1	147
38	Source Apportionment of Aerosols by ¹⁴ C Measurements in Different Carbonaceous Particle Fractions. Radiocarbon, 2004, 46, 475-484.	1.8	123