Elliott D Crouser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The landscape of transcriptomic and proteomic studies in sarcoidosis. ERJ Open Research, 2022, 8, 00621-2021.	2.6	5
2	Inflammasome Activation in an In Vitro Sepsis Model Recapitulates Increased Monocyte Distribution Width Seen in Patients With Sepsis. , 2022, 4, e0631.		7
3	The influence of age and sex in sarcoidosis. Current Opinion in Pulmonary Medicine, 2022, 28, 307-313.	2.6	4
4	Phagosome-regulated mTOR signalling during sarcoidosis granuloma biogenesis. European Respiratory Journal, 2021, 57, 2002695.	6.7	15
5	Circulating exosomal microRNA expression patterns distinguish cardiac sarcoidosis from myocardial ischemia. PLoS ONE, 2021, 16, e0246083.	2.5	14
6	A Pilot Randomized Trial of Transdermal Nicotine for Pulmonary Sarcoidosis. Chest, 2021, 160, 1340-1349.	0.8	15
7	Misconceptions regarding symptoms of sarcoidosis. Lancet Respiratory Medicine,the, 2021, 9, 816-818.	10.7	16
8	Challenges of Sarcoidosis and Its Management. New England Journal of Medicine, 2021, 385, 1018-1032.	27.0	163
9	Summary for Clinicians: Clinical Practice Guideline for the Diagnosis and Detection of Sarcoidosis. Annals of the American Thoracic Society, 2020, 17, 1510-1515.	3.2	4
10	Current Sarcoidosis Models and the Importance of Focusing on the Granuloma. Frontiers in Immunology, 2020, 11, 1719.	4.8	24
11	Reply to P. B. et al., to Fahim and Rosewarne, and to Reich. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1322-1324.	5.6	0
12	Design, rationale, and baseline characteristics of a pilot randomized clinical trial of nicotine treatment for pulmonary sarcoidosis. Contemporary Clinical Trials Communications, 2020, 20, 100669.	1.1	7
13	High-dose intravenous glucocorticoids are effective in the acute management of ventricular arrhythmias in cardiac sarcoidosis: A case series. HeartRhythm Case Reports, 2020, 6, 706-710.	0.4	6
14	Differential transcriptomics in sarcoidosis lung and lymph node granulomas with comparisons to pathogen-specific granulomas. Respiratory Research, 2020, 21, 321.	3.6	17
15	Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA. Journal of Intensive Care, 2020, 8, 33.	2.9	49
16	Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2020, 201, e26-e51.	5.6	521
17	Delphi consensus recommendations for a treatment algorithm in pulmonary sarcoidosis. European Respiratory Review, 2020, 29, 190146.	7.1	92
18	IL-13–regulated Macrophage Polarization during Granuloma Formation in an <i>In Vitro</i> Human Sarcoidosis Model. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 84-95.	2.9	47

Elliott D Crouser

#	Article	IF	CITATIONS
19	Sarcoidosis Models. , 2019, , 67-73.		2
20	Lessons Learned from the ABCs of Granuloma Formation. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 277-278.	2.9	3
21	Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559)*. Critical Care Medicine, 2019, 47, 632-642.	0.9	149
22	Predicted Economic Benefits of a Novel Biomarker for Earlier Sepsis Identification and Treatment: A Counterfactual Analysis. , 2019, 1, e0029.		5
23	Potential immunotherapies for sarcoidosis. Expert Opinion on Biological Therapy, 2018, 18, 399-407.	3.1	19
24	Epidemiology and Costs of Sepsis in the United States—An Analysis Based on Timing of Diagnosis and Severity Level*. Critical Care Medicine, 2018, 46, 1889-1897.	0.9	436
25	Survival After MI in a Community Cohort Study: Contribution of Comorbidities in NSTEMI. Global Heart, 2018, 13, 13.	2.3	4
26	Exosomal MicroRNA for Detection of Cardiac Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 931-934.	5.6	11
27	Improved Early Detection of Sepsis in the ED With a Novel Monocyte Distribution Width Biomarker. Chest, 2017, 152, 518-526.	0.8	120
28	A Novel <i>In Vitro</i> Human Granuloma Model of Sarcoidosis and Latent Tuberculosis Infection. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 487-498.	2.9	52
29	Executive Summary of the NHLBI Workshop Report: Leveraging Current Scientific Advancements to Understand Sarcoidosis Variability and Improve Outcomes. Annals of the American Thoracic Society, 2017, 14, S415-S420.	3.2	20
30	Application of "Omics―and Systems Biology to Sarcoidosis Research. Annals of the American Thoracic Society, 2017, 14, S445-S451.	3.2	29
31	Endothelial Damage During Septic Shock. Chest, 2017, 152, 1-3.	0.8	16
32	Severe Sarcoidosis Phenotypes. Chest, 2016, 150, 263-265.	0.8	6
33	Resolution of Abnormal Cardiac Mri T2 Signal following Immune Suppression for Cardiac Sarcoidosis. Journal of Investigative Medicine, 2016, 64, 1148-1150.	1.6	28
34	Tolerance and Cross-Tolerance following Toll-Like Receptor (TLR)-4 and -9 Activation Are Mediated by IRAK-M and Modulated by IL-7 in Murine Splenocytes. PLoS ONE, 2015, 10, e0132921.	2.5	15
35	Mathematical model of sarcoidosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16065-16070.	7.1	69
36	The WASOG Sarcoidosis Organ Assessment Instrument: An update of a previous clinical tool. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2014, 31, 19-27.	0.2	273

Elliott D Crouser

#	Article	IF	CITATIONS
37	Nicotine Treatment Improves Toll-Like Receptor 2 and Toll-Like Receptor 9 Responsiveness in Active Pulmonary Sarcoidosis. Chest, 2013, 143, 461-470.	0.8	58
38	Mitochondrial Transcription Factor A, an Endogenous Danger Signal, Promotes TNFα Release via RAGE- and TLR9-Responsive Plasmacytoid Dendritic Cells. PLoS ONE, 2013, 8, e72354.	2.5	75
39	Quantitative Computerized Two-Point Correlation Analysis of Lung CT Scans Correlates With Pulmonary Function in Pulmonary Sarcoidosis. Chest, 2012, 142, 1589-1597.	0.8	16
40	Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochemical and Biophysical Research Communications, 2012, 417, 886-891.	2.1	45
41	An In Silico Modeling Approach to Understanding the Dynamics of Sarcoidosis. PLoS ONE, 2011, 6, e19544.	2.5	7
42	The CD4 + Lymphopenic Sarcoidosis Phenotype Is Highly Responsive to Anti-Tumor Necrosis Factor-α Therapy. Chest, 2010, 137, 1432-1435.	0.8	54
43	Gene Expression Profiling Identifies MMP-12 and ADAMDEC1 as Potential Pathogenic Mediators of Pulmonary Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 929-938.	5.6	127
44	Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors. Critical Care Medicine, 2009, 37, 2000-2009.	0.9	102
45	Sepsis: Links between Pathogen Sensing and Organ Damage. Current Pharmaceutical Design, 2008, 14, 1840-1852.	1.9	42
46	Considering an infectious etiology of sarcoidosis. Clinics in Dermatology, 2007, 25, 259-266.	1.6	20
47	Carbamoyl phosphate synthase-1: A marker of mitochondrial damage and depletion in the liver during sepsis. Critical Care Medicine, 2006, 34, 2439-2446.	0.9	102
48	AÂproteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Medicine, 2006, 32, 1252-1262.	8.2	31
49	Flavopiridol Decreases Mcl-1 and Initiates Early Mitochondrial Damage in Chronic Lymphocytic Leukemia (CLL) Cells Blood, 2006, 108, 2098-2098.	1.4	0
50	Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion, 2004, 4, 729-741.	3.4	325
51	Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia*. Critical Care Medicine, 2004, 32, 478-488.	0.9	85
52	Quantitation of cytochrome c release from rat liver mitochondria. Analytical Biochemistry, 2003, 317, 67-75.	2.4	72
53	Cyclosporin A ameliorates mitochondrial ultrastructural injury in the ileum during acute endotoxemia*. Critical Care Medicine, 2002, 30, 2722-2728.	0.9	31
54	Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Critical Care Medicine, 2002, 30, 276-284.	0.9	362