Jean-Yves Winum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia-activated prodrug derivatives of anti-cancer drugs: a patent review 2006 – 2021. Expert Opinion on Therapeutic Patents, 2022, 32, 1-12.	5.0	14
2	Carbonic Anhydrase Inhibitors Featuring a Porphyrin Scaffold: Synthesis, Optical and Biological Properties. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
3	The importance of sulfur-containing motifs in drug design and discovery. Expert Opinion on Drug Discovery, 2022, 17, 501-512.	5.0	60
4	1,5â€Benzodiazepines as a platform for the design of carbonic anhydrase inhibitors. Archiv Der Pharmazie, 2022, 355, 2100405.	4.1	3
5	Design, implementation, and evaluation of a game-based application for aiding chemical engineering and chemistry students to review the organic reactions. Education for Chemical Engineers, 2021, 34, 106-114.	4.8	14
6	Response to Perspectives on the Classical Enzyme Carbonic Anhydrase and the Search for Inhibitors. Biophysical Journal, 2021, 120, 178-181.	0.5	16
7	Nanostructures and innovative delivery systems for overcoming cancer resistance. , 2021, , 185-201.		Ο
8	The Hunt for Maya Purple: Revisiting Ancient Pigments Syntheses and Properties. Journal of Chemical Education, 2021, 98, 1389-1396.	2.3	2
9	Design, synthesis and photoluminescent studies of new 1,5-benzodiazepines derivatives: Towards new ESIPT compounds. Tetrahedron, 2021, 86, 132078.	1.9	6
10	HSG400 – Design, implementation, and evaluation of a hybrid board game for aiding chemistry and chemical engineering students in the review of stereochemistry during and after the COVID-19 pandemic. Education for Chemical Engineers, 2021, 36, 90-99.	4.8	8
11	Synthesis, Crystal Structure, Inhibitory Activity and Molecular Docking of Coumarins/Sulfonamides Containing Triazolyl Pyridine Moiety as Potent Selective Carbonic Anhydrase IX and XII Inhibitors. Crystals, 2021, 11, 1076.	2.2	12
12	Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 561-580.	5.2	81
13	Design, synthesis, <i>inÂvitro</i> inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 109-117.	5.2	20
14	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–6. Molecules, 2020, 25, 119.	3.8	8
15	Interactions 500: Design, Implementation, and Evaluation of a Hybrid Board Game for Aiding Students in the Review of Intermolecular Forces During the COVID-19 Pandemic. Journal of Chemical Education, 2020, 97, 4049-4054.	2.3	21
16	A Novel Inhibitor of Carbonic Anhydrases Prevents Hypoxia-Induced TNBC Cell Plasticity. International Journal of Molecular Sciences, 2020, 21, 8405.	4.1	14
17	Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites, 2020, 10, 412.	2.9	116
18	Benzoxaboroles: New Potent Inhibitors of the Carbonic Anhydrases of the Pathogenic Bacterium <i>Vibrio cholerae</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2277-2284.	2.8	25

#	Article	IF	CITATIONS
19	Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation. Molecules, 2020, 25, 2347.	3.8	8
20	Targeting the Human 80S Ribosome in Cancer: From Structure to Function and Drug Design for Innovative Adjuvant Therapeutic Strategies. Cells, 2020, 9, 629.	4.1	45
21	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7. Molecules, 2020, 25, 2968.	3.8	5
22	Reactions: An Innovative and Fun Hybrid Game to Engage the Students Reviewing Organic Reactions in the Classroom. Journal of Chemical Education, 2020, 97, 749-753.	2.3	13
23	Abstract 5088: Blocking mesenchymal stem cell-induced CAIX hampers metastatic potential and chemoresistance in TNBC. , 2020, , .		Ο
24	Carbonic anhydrase inhibitors for the treatment of tumors. , 2019, , 331-365.		3
25	Bis-benzoxaboroles: Design, Synthesis, and Biological Evaluation as Carbonic Anhydrase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1205-1210.	2.8	19
26	Metalloenzymes as Therapeutic Targets. Current Medicinal Chemistry, 2019, 26, 2556-2557.	2.4	1
27	Multivalent Carbonic Anhydrases Inhibitors. International Journal of Molecular Sciences, 2019, 20, 5352.	4.1	21
28	Novel method of treating macular degeneration: a patent evaluation (WO2018/107005). Expert Opinion on Therapeutic Patents, 2019, 29, 749-752.	5.0	4
29	N-aryl-N'-ureido-O-sulfamates: Potent and selective inhibitors of the human Carbonic Anhydrase VII isoform with neuropathic pain relieving properties. Bioorganic Chemistry, 2019, 89, 103033.	4.1	15
30	Novel Re(I) tricarbonyl coordination compounds based on 2-pyridyl-1,2,3-triazole derivatives bearing a 4-amino-substituted benzenesulfonamide arm: synthesis, crystal structure, computational studies and inhibitory activity against carbonic anhydrase I, II, and IX isoformsâ€. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 773-782.	5.2	15
31	(Hetero)aryl substituted thiazol-2,4-yl scaffold as human carbonic anhydrase I, II, VII and XIV activators. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 224-229.	5.2	8
32	Exploring benzoxaborole derivatives as carbonic anhydrase inhibitors: a structural and computational analysis reveals their conformational variability as a tool to increase enzyme selectivity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1498-1505.	5.2	7
33	Inhibitors of Selected Bacterial Metalloenzymes. Current Medicinal Chemistry, 2019, 26, 2690-2714.	2.4	2
34	Carbonic anhydrases from <i>Trypanosoma cruzi</i> and <i>Leishmania donovani chagasi</i> are inhibited by benzoxaboroles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 286-289.	5.2	50
35	Benzoxaborole compounds for therapeutic uses: a patent review (2010- 2018). Expert Opinion on Therapeutic Patents, 2018, 28, 493-504.	5.0	86
36	Co-targeting intracellular pH and essential amino acid uptake cooperates to induce cell death of T-ALL/LL cells. Leukemia and Lymphoma, 2018, 59, 460-468.	1.3	5

#	Article	IF	CITATIONS
37	Carbonic Anhydrase Inhibitors as Novel Drugs against Mycobacterial β-Carbonic Anhydrases: An Update on In Vitro and In Vivo Studies. Molecules, 2018, 23, 2911.	3.8	20
38	Carbonic anhydrase enzymes for regulating mast cell hematopoiesis and type-2 inflammation: a patent evaluation (WO2017/058370). Expert Opinion on Therapeutic Patents, 2018, 28, 741-743.	5.0	2
39	Inhibition of carbonic anhydrases by a substrate analog: benzyl carbamate directly coordinates the catalytic zinc ion mimicking bicarbonate binding. Chemical Communications, 2018, 54, 10312-10315.	4.1	19
40	Nitroimidazole-based inhibitors DTP338 and DTP348 are safe for zebrafish embryos and efficiently inhibit the activity of human CA IX in <i>Xenopus</i> oocytes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1064-1073.	5.2	14
41	Effective Access to Multivalent Inhibitors of Carbonic Anhydrases Promoted by Peptide Bioconjugation. Chemistry - A European Journal, 2017, 23, 6788-6794.	3.3	21
42	<i>Brucella suis</i> carbonic anhydrases and their inhibitors: Towards alternative antibiotics?. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 683-687.	5.2	33
43	Benzoxaboroles as Efficient Inhibitors of the β-Carbonic Anhydrases from Pathogenic Fungi: Activity and Modeling Study. ACS Medicinal Chemistry Letters, 2017, 8, 1194-1198.	2.8	47
44	Polyhedral Oligomeric Silsesquioxane (POSS) Bearing Glyoxylic Aldehyde as Clickable Platform Towards Multivalent Conjugates. Chemistry - A European Journal, 2017, 23, 17867-17869.	3.3	5
45	Anion inhibitors of the β-carbonic anhydrase from the pathogenic bacterium responsible of tularemia, Francisella tularensis. Bioorganic and Medicinal Chemistry, 2017, 25, 4800-4804.	3.0	13
46	New approach of delivering cytotoxic drugs towards CAIX expressing cells: A concept of dual-target drugs. European Journal of Medicinal Chemistry, 2017, 127, 691-702.	5.5	22
47	Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1002-1011.	5.2	26
48	The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: solution and X-ray crystallographic studies. Organic and Biomolecular Chemistry, 2016, 14, 4853-4858.	2.8	26
49	Inhibitors of Histidinol Dehydrogenase. Topics in Medicinal Chemistry, 2016, , 35-46.	0.8	1
50	Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chemical Communications, 2016, 52, 11983-11986.	4.1	69
51	Synthesis and composition of amino acid linking groups conjugated to compounds used for the targeted imaging of tumors: a patent evaluation of US20160011199A1. Expert Opinion on Therapeutic Patents, 2016, 26, 1223-1226.	5.0	2
52	Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases. Chemistry - A European Journal, 2015, 21, 10249-10249.	3.3	1
53	Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases. Chemistry - A European Journal, 2015, 21, 10306-10309.	3.3	23
54	Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of <i>in vitro</i> breast cancer models. Oncotarget, 2015, 6, 24856-24870.	1.8	76

#	Article	IF	CITATIONS
55	Binding of Carbonic Anhydrase IX to 45S rDNA Genes Is Prevented by Exportin-1 in Hypoxic Cells. BioMed Research International, 2015, 2015, 1-10.	1.9	11
56	Hydroxylamine-O-sulfonamide is a versatile lead compound for the development of carbonic anhydrase inhibitors. Chemical Communications, 2015, 51, 11519-11522.	4.1	10
57	Carbonic Anhydrase Clycoinhibitors belonging to the Aminoxysulfonamide Series. ACS Medicinal Chemistry Letters, 2015, 6, 819-821.	2.8	9
58	N-glycosyl-N-hydroxysulfamides as potent inhibitors of Brucella suis carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 1010-1012.	5.2	6
59	Carbonic Anhydrases as Esterases and Their Biotechnological Applications. , 2015, , 361-371.		3
60	Inhibition of β-carbonic anhydrases from Brucella suis with C-cinnamoyl glycosides incorporating the phenol moiety. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 1017-1020.	5.2	13
61	Carbonic Anhydrase XIV: Structure, Functions, and Potential Medical Applications. , 2015, , 221-237.		0
62	Designing carbonic anhydrase inhibitors for the treatment of breast cancer. Expert Opinion on Drug Discovery, 2015, 10, 591-597.	5.0	43
63	Poly(amidoamine) Dendrimers with Carbonic Anhydrase Inhibitory Activity and Antiglaucoma Action. Journal of Medicinal Chemistry, 2015, 58, 4039-4045.	6.4	31
64	Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Medicinal Chemistry, 2015, 7, 1407-1414.	2.3	135
65	Emerging trends in enzyme inhibition by multivalent nanoconstructs. Organic and Biomolecular Chemistry, 2015, 13, 9894-9906.	2.8	81
66	New ways to image and target tumour hypoxia and its molecular responses. Radiotherapy and Oncology, 2015, 116, 352-357.	0.6	49
67	Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 321-324.	5.2	74
68	Ferrier sulfamidoglycosylation of glycals catalyzed by nitrosonium tetrafluoroborate: Towards new carbonic anhydrase glycoinhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 6353-6359.	3.0	18
69	Structural basis for the rational design of new anti-Brucella agents: The crystal structure of the C366S mutant of l-histidinol dehydrogenase from Brucella suis. Biochimie, 2014, 97, 114-120.	2.6	9
70	Metal-based carboxamide-derived compounds endowed with antibacterial and antifungal activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 517-526.	5.2	8
71	Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff's bases incorporating sulfonamide, carboxylate and carboxymethyl moieties. Bioorganic and Medicinal Chemistry, 2014, 22, 2867-2874.	3.0	22
72	Oxo- and thiooxo-imidazo[1,5-c]pyrimidine molecule library: Beyond their interest in inhibition of Brucella suis histidinol dehydrogenase, a powerful protection tool in the synthesis of histidine analogues. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5008-5010.	2.2	5

#	Article	IF	CITATIONS
73	Mono- and di-halogenated histamine, histidine and carnosine derivatives are potent carbonic anhydrase I, II, VII, XII and XIV activators. Bioorganic and Medicinal Chemistry, 2014, 22, 4752-4758.	3.0	20
74	Dominant behaviours in the expression of human carbonic anhydrase hCA I activity. Chemical Communications, 2014, 50, 8043-8046.	4.1	16
75	Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: A new concept of dual targeting drugs. Radiotherapy and Oncology, 2013, 108, 523-528.	0.6	80
76	A spectrophotometric and thermodynamic study of the charge-transfer complexes of N-aryl-Nâ€2-isopropyloxycarbonylsulfamides with DDQ and TCNE. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 108, 55-61.	3.9	12
77	Thiol–ene click chemistry for the synthesis of highly effective glycosyl sulfonamide carbonic anhydrase inhibitors. Chemical Communications, 2013, 49, 5699.	4.1	13
78	Glycosidic carbonic anhydrase IX inhibitors: A sweet approach against cancer. Bioorganic and Medicinal Chemistry, 2013, 21, 1419-1426.	3.0	58
79	Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene, 2013, 32, 5210-5219.	5.9	287
80	Hypoxia-Targeting Carbonic Anhydrase IX Inhibitors by a New Series of Nitroimidazole-Sulfonamides/Sulfamides/Sulfamates. Journal of Medicinal Chemistry, 2013, 56, 8512-8520.	6.4	76
81	Metronidazole-coumarin conjugates and 3-cyano-7-hydroxy-coumarin act as isoform-selective carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 397-401.	5.2	90
82	Novel antibody to a carbonic anhydrase: patent evaluation of WO2011138279A1. Expert Opinion on Therapeutic Patents, 2013, 23, 757-760.	5.0	6
83	Grafting of 4-aminomethylbenzensulfonamide-lipoic acid conjugate on gold nanoparticles. IOP Conference Series: Materials Science and Engineering, 2012, 28, 012032.	0.6	Ο
84	Antimetastatic Effect of Sulfamate Carbonic Anhydrase IX Inhibitors in Breast Carcinoma Xenografts. Journal of Medicinal Chemistry, 2012, 55, 5591-5600.	6.4	149
85	Polypharmacology of sulfonamides: pazopanib, a multitargeted receptor tyrosine kinase inhibitor in clinical use, potently inhibits several mammalian carbonic anhydrases. Chemical Communications, 2012, 48, 8177.	4.1	66
86	Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. Journal of Inorganic Biochemistry, 2012, 111, 138-145.	3.5	20
87	Ureido-substituted sulfamates show potent carbonic anhydrase IX inhibitory and antiproliferative activities against breast cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4681-4685.	2.2	57
88	Development of Potent Carbonic Anhydrase Inhibitors Incorporating Both Sulfonamide and Sulfamide Groups. Journal of Medicinal Chemistry, 2012, 55, 6776-6783.	6.4	52
89	Flavones and structurally related 4-chromenones inhibit carbonic anhydrases by a different mechanism of action compared to coumarins. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3063-3066.	2.2	25
90	Inhibition of beta-carbonic anhydrases from the bacterial pathogen Brucella suis with inorganic anions. Journal of Inorganic Biochemistry, 2012, 110, 36-39.	3.5	29

#	Article	IF	CITATIONS
91	Recent Developments in Targeting Carbonic Anhydrase IX for Cancer Therapeutics. Oncotarget, 2012, 3, 84-97.	1.8	365
92	Glycosyl Coumarin Carbonic Anhydrase IX and XII Inhibitors Strongly Attenuate the Growth of Primary Breast Tumors. Journal of Medicinal Chemistry, 2011, 54, 8271-8277.	6.4	228
93	Targeting Tumor Hypoxia: Suppression of Breast Tumor Growth and Metastasis by Novel Carbonic Anhydrase IX Inhibitors. Cancer Research, 2011, 71, 3364-3376.	0.9	662
94	Anti-virulence Strategy against Brucella suis: Synthesis, Biological Evaluation and Molecular Modeling of Selective Histidinol Dehydrogenase Inhibitors. Organic and Biomolecular Chemistry, 2011, 9, 3681.	2.8	16
95	Synthesis and biological evaluation of a new class of anti-brucella compounds targeting histidinol dehydrogenase: α-O-arylketones and α-S-arylketones derived from histidine. MedChemComm, 2011, 2, 995.	3.4	4
96	Carbonic Anhydrase Activators: Gold Nanoparticles Coated with Derivatized Histamine, Histidine, and Carnosine Show Enhanced Activatory Effects on Several Mammalian Isoforms. Journal of Medicinal Chemistry, 2011, 54, 1170-1177.	6.4	54
97	Carbonic anhydrase I and II activation with mono- and dihalogenated histamine derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4884-4887.	2.2	23
98	Synthesis of rhodamine B–benzenesulfonamide conjugates and their inhibitory activity against human α- and bacterial/fungal β-carbonic anhydrases. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5210-5213.	2.2	12
99	A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth. Bioorganic and Medicinal Chemistry, 2011, 19, 1172-1178.	3.0	79
100	Sulfonamides incorporating boroxazolidone moieties are potent inhibitors of the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2975-2979.	2.2	14
101	Brucella Carbonic Anhydrases: New Targets for Designing Anti-Infective Agents. Current Pharmaceutical Design, 2010, 16, 3310-3316.	1.9	47
102	Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2178-2182.	2.2	51
103	Carbonic anhydrase inhibitors: Crystallographic and solution binding studies for the interaction of a boron-containing aromatic sulfamide with mammalian isoforms l–XV. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3601-3605.	2.2	27
104	Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from <i>Brucella suis</i> . Journal of Medicinal Chemistry, 2010, 53, 2277-2285.	6.4	104
105	Carbonic anhydrase inhibitors: Gd(iii) complexes of DOTA- and TETA-sulfonamide conjugates targeting the tumor associated carbonic anhydrase isozymes IX and XII. New Journal of Chemistry, 2010, 34, 2139.	2.8	5
106	<i>tert</i> -Butyl <i>N</i> -[<i>N</i> , <i>N</i> -bis(2-chloroethyl)sulfamoyl]- <i>N</i> -(2-chloroethyl)carbamate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2543-o2544.	0.2	2
107	Expeditious Stereoselective Synthesis of l-Iminosugar Precursors via a Mitsunobu Reaction. Synlett, 2009, 2009, 978-980.	1.8	0
108	Therapeutic applications of glycosidic carbonic anhydrase inhibitors. Medicinal Research Reviews, 2009, 29, 419-435.	10.5	104

#	Article	IF	CITATIONS
109	Carbonic Anhydrase Inhibitors: Glycosylsulfanilamides Act as Subnanomolar Inhibitors of the Human Secreted Isoform VI. Chemical Biology and Drug Design, 2009, 74, 636-639.	3.2	7
110	Carbonic anhydrase II-induced selection of inhibitors from a dynamic combinatorial library of Schiff's bases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6014-6017.	2.2	44
111	Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isoforms I and II and transmembrane, tumor-associated isoforms IX and XII with boronic acids. Bioorganic and Medicinal Chemistry, 2009, 17, 3649-3652.	3.0	29
112	Carbonic anhydrase activators: Activation of human isozymes I, II and IX with phenylsulfonylhydrazido I-histidine derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2440-2443.	2.2	23
113	Carbonic anhydrase inhibitors. Inhibition of the fungal β-carbonic anhydrases from Candida albicans and Cryptococcus neoformans with boronic acids. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2642-2645.	2.2	47
114	Carbonic anhydrase inhibitors; Fluorinated phenyl sulfamates show strong inhibitory activity and selectivity for the inhibition of the tumor-associated isozymes IX and XII over the cytosolic ones I and II. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5082-5085.	2.2	12
115	Carbonic Anhydrase-Encoded Dynamic Constitutional Libraries: Toward the Discovery of Isozyme-Specific Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 4853-4859.	6.4	40
116	Carbonic Anhydrase Inhibitors. Comparison of Aliphatic Sulfamate/Bis-sulfamate Adducts with Isozymes II and IX as a Platform for Designing Tight-Binding, More Isoform-Selective Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5990-5998.	6.4	21
117	Inhibition of Carbonic Anhydrase IX: A New Strategy Against Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 693-702.	1.7	36
118	Carbonic anhydrase IX: A new druggable target for the design of antitumor agents. Medicinal Research Reviews, 2008, 28, 445-463.	10.5	210
119	Carbonic Anhydrase Inhibitors: Design of Membraneâ€Impermeant Copper(II) Complexes of DTPAâ€, DOTAâ€, and TETAâ€Tailed Sulfonamides Targeting the Tumorâ€Associated Transmembrane Isoform IX. ChemMedChem, 2008, 3, 1780-1788.	3.2	28
120	Carbonic anhydrase inhibitors: 2-Substituted-1,3,4-thiadiazole-5-sulfamides act as powerful and selective inhibitors of the mitochondrial isozymes VA and VB over the cytosolic and membrane-associated carbonic anhydrases I, II and IV. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6332-6335.	2.2	24
121	Carbonic anhydrase inhibitors: Copper(II) complexes of polyamino-polycarboxylamido aromatic/heterocyclic sulfonamides are very potent inhibitors of the tumor-associated isoforms IX and XII. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 836-841.	2.2	37
122	Carbonic anhydrase inhibitors: Design of spin-labeled sulfonamides incorporating TEMPO moieties as probes for cytosolic or transmembrane isozymes. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3475-3480.	2.2	16
123	<i>Brucella suis</i> histidinol dehydrogenase: Synthesis and inhibition studies of substituted N-L-histidinylphenylsulfonyl hydrazide. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 357-361.	5.2	9
124	Carbonic Anhydrase Inhibitor Coated Gold Nanoparticles Selectively Inhibit the Tumor-Associated Isoform IX over the Cytosolic Isozymes I and II. Journal of the American Chemical Society, 2008, 130, 16130-16131.	13.7	102
125	Design of Zinc Binding Functions for Carbonic Anhydrase Inhibitors. Current Pharmaceutical Design, 2008, 14, 615-621.	1.9	75
126	Targeting Bacterial Metalloenzymes: A New Strategy for the Development of Anti-Infective Agents. Anti-Infective Agents in Medicinal Chemistry, 2008, 7, 169-179.	0.6	15

#	Article	IF	CITATIONS
127	Metal Binding Functions in the Design of Carbonic Anhydrase Inhibitors. Current Topics in Medicinal Chemistry, 2007, 7, 835-848.	2.1	22
128	Targeting of the <i>Brucella suis</i> Virulence Factor Histidinol Dehydrogenase by Histidinol Analogues Results in Inhibition of Intramacrophagic Multiplication of the Pathogen. Antimicrobial Agents and Chemotherapy, 2007, 51, 3752-3755.	3.2	22
129	Synthesis of Substituted N-aryl-N-Sulfamoyloxazolidin-2-ones with Potential Antibacterial Activity. Recent Patents on Anti-infective Drug Discovery, 2007, 2, 131-139.	0.8	4
130	Carbonic anhydrase IX inhibitors: fluorescent sulfonamides as therapeutic and diagnostic agents. Expert Opinion on Therapeutic Patents, 2007, 17, 1393-1396.	5.0	3
131	Brucella suis histidinol dehydrogenase: Synthesis and inhibition studies of a series of substituted benzylic ketones derived from histidine. Bioorganic and Medicinal Chemistry, 2007, 15, 4427-4433.	3.0	36
132	Carbonic anhydrase inhibitors: Binding of an antiglaucoma glycosyl-sulfanilamide derivative to human isoform II and its consequences for the drug design of enzyme inhibitors incorporating sugar moieties. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1726-1731.	2.2	38
133	Carbonic anhydrase inhibitors: The X-ray crystal structure of the adduct of N-hydroxysulfamide with isozyme II explains why this new zinc binding function is effective in the design of potent inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2795-2801.	2.2	15
134	Carbonic anhydrase inhibitors. Inhibition of isoforms I, II, IV, VA, VII, IX, and XIV with sulfonamides incorporating fructopyranose–thioureido tails. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2685-2691.	2.2	48
135	Carbonic anhydrase inhibitors: Selective inhibition of the extracellular, tumor-associated isoforms IX and XII over isozymes I and II with glycosyl-thioureido-sulfonamides. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5096-5100.	2.2	26
136	Carbonic anhydrase inhibitors. N-Cyanomethylsulfonamides—a new zinc binding group in the design of inhibitors targeting cytosolic and membrane-anchored isoforms. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 477-481.	5.2	3
137	Efficient Synthesis of Chiral 1,1′â€Sulfonyl Bisaziridines. Synthetic Communications, 2006, 36, 2299-2305.	2.1	5
138	Carbonic Anhydrase Inhibitors:Â Hypoxia-Activatable Sulfonamides Incorporating Disulfide Bonds that Target the Tumor-Associated Isoform IXâ€. Journal of Medicinal Chemistry, 2006, 49, 5544-5551.	6.4	100
139	Carbonic Anhydrase Inhibitors:  Clash with Ala65 as a Means for Designing Inhibitors with Low Affinity for the Ubiquitous Isozyme II, Exemplified by the Crystal Structure of the Topiramate Sulfamide Analogue. Journal of Medicinal Chemistry, 2006, 49, 7024-7031.	6.4	147
140	Kinetic investigation on aqueous decomposition of 2-chloroethylnitrososulfamide. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1021-1027.	2.2	12
141	Synthesis and Pharmacological Evaluation of Novel Nitrobenzenic Thromboxane Modulators as Antiplatelet Agents Acting on Both the Alpha and Beta Isoforms of the Human Thromboxane Receptor. Journal of Medicinal Chemistry, 2006, 49, 3701-3709.	6.4	12
142	Study on the Decomposition of 2-Chloroethylnitro- sosulfamides (CENS) in Serum Using HPLC On-line Solid Phase Extraction. Archiv Der Pharmazie, 2006, 339, 521-526.	4.1	3
143	Therapeutic potential of sulfamides as enzyme inhibitors. Medicinal Research Reviews, 2006, 26, 767-792.	10.5	173
144	New Zinc Binding Motifs in the Design of Selective Carbonic Anhydrase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2006, 6, 921-936.	2.4	78

#	Article	IF	CITATIONS
145	The sulfamide motif in the design of enzyme inhibitors. Expert Opinion on Therapeutic Patents, 2006, 16, 27-47.	5.0	74
146	Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with bis-sulfamates. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 579-584.	2.2	43
147	Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with organic phosphates and phosphonates. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1683-1686.	2.2	25
148	Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with N-hydroxysulfamides—a new zinc-binding function in the design of inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2353-2358.	2.2	46
149	Carbonic anhydrase inhibitors. Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with boron-containing sulfonamides, sulfamides, and sulfamates: Toward agents for boron neutron capture therapy of hypoxic tumors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3302-3306.	2.2	52
150	Synthesis and properties of isocannabinoid and cholesterol derivatized rhamnosurfactants: application to liposomal targeting of keratinocytes and skin. European Journal of Medicinal Chemistry, 2005, 40, 1022-1029.	5.5	20
151	Sulfamates and their therapeutic potential. Medicinal Research Reviews, 2005, 25, 186-228.	10.5	191
152	Sulfamates and Their Therapeutic Potential. ChemInform, 2005, 36, no.	0.0	0
153	Carbonic Anhydrase Inhibitors: Synthesis and Inhibition of Cytosolic/Tumor-Associated Carbonic Anhydrase Isozymes I, II, and IX with Sulfonamides Incorporating Thioureido-Sulfanilyl Scaffolds ChemInform, 2005, 36, no.	0.0	0
154	Carbonic Anhydrase Inhibitors: Synthesis and Inhibition of Cytosolic/Tumor-Associated Carbonic Anhydrase Isozymes I, II, IX, and XII with N-Hydroxysulfamides — A New Zinc-Binding Function in the Design of Inhibitors ChemInform, 2005, 36, no.	0.0	0
155	Inclusion complexes of N-sulfamoyloxazolidinones with β-cyclodextrin. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 889-894.	2.2	15
156	Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating thioureido-sulfanilyl scaffolds. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2359-2364.	2.2	25
157	Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3102-3108.	2.2	137
158	Carbonic Anhydrase Inhibitors. Design of Fluorescent Sulfonamides as Probes of Tumor-Associated Carbonic Anhydrase IX That Inhibit Isozyme IX-Mediated Acidification of Hypoxic Tumorsâ€. Journal of Medicinal Chemistry, 2005, 48, 4834-4841.	6.4	205
159	Carbonic Anhydrase Inhibitors:Â Synthesis and Inhibition of Cytosolic/Membrane-Associated Carbonic Anhydrase Isozymes I, II, and IX with Sulfonamides Incorporating Hydrazino Moieties. Journal of Medicinal Chemistry, 2005, 48, 2121-2125.	6.4	70
160	Design, Synthesis, and Pharmacological Evaluation of Pyridinic Analogues of Nimesulide as Cyclooxygenase-2 Selective Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 6749-6759.	6.4	46
161	Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with EMATE, a dual inhibitor of carbonic anhydrases and steroid sulfatase. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 231-234.	2.2	147
162	Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides derived from 4-isothiocyanato-benzolamide. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5775-5780.	2.2	46

#	Article	IF	CITATIONS
163	New pyrophosphate analogues: a facile access to N-(O-alkyl-sulfamoyl)phosphoramidic acids via a simple and quantitative reaction of N-(O-alkylsulfamoyl)trimethylphospha-λ5-azene with bromotrimethylsilane and water. Tetrahedron, 2004, 60, 2187-2190.	1.9	2
164	Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5427-5433.	2.2	98
165	Inclusion complexes of 2-chloroethylnitrososulfamides (CENS) with β-cyclodextrin. European Journal of Medicinal Chemistry, 2004, 39, 79-84.	5.5	11
166	Carbonic anhydrase inhibitors: N-(p-sulfamoylphenyl)-α-d-glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 225-229.	2.2	68
167	Carbonic Anhydrase Inhibitors: Aliphatic N-phosphorylated SulfamatesA Novel Zinc-anchoring Group Leading to Nanomolar Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 275-278.	5.2	11
168	Therapeutic applications of sulfamates. Expert Opinion on Therapeutic Patents, 2004, 14, 1273-1308.	5.0	31
169	Nâ€Chlorosulfonyloxazolidinâ€2â€ones: Synthesis, Structure, and Reactivity Toward Aminoesters. Synthetic Communications, 2004, 34, 1653-1662.	2.1	14
170	Synthesis of New Targretin® Analogues That Induce Apoptosis in Leukemia HL-60 Cells ChemInform, 2003, 34, no.	0.0	0
171	Carbonic Anhydrase Inhibitors: Inhibition of Cytosolic Isozymes I and II with Sulfamide Derivatives ChemInform, 2003, 34, no.	0.0	Ο
172	Synthesis and Biological Evaluation of Fotemustine Analogues on Human Melanoma Cell Lines ChemInform, 2003, 34, no.	0.0	0
173	General synthesis of n-membered cyclic sulfamides. Tetrahedron, 2003, 59, 6051-6056.	1.9	26
174	Synthesis and biological evaluation of Fotemustine analogues on human melanoma cell lines. European Journal of Medicinal Chemistry, 2003, 38, 319-324.	5.5	25
175	Carbonic anhydrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 837-840.	2.2	81
176	Carbonic Anhydrase Inhibitors:  Inhibition of Transmembrane, Tumor-Associated Isozyme IX, and Cytosolic Isozymes I and II with Aliphatic Sulfamates. Journal of Medicinal Chemistry, 2003, 46, 5471-5477.	6.4	79
177	Carbonic Anhydrase Inhibitors. Inhibition of Cytosolic Isozymes I and II and Transmembrane, Tumor-Associated Isozyme IX with Sulfamates Including EMATE Also Acting as Steroid Sulfatase Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 2197-2204.	6.4	138
178	Synthese et N-Acylation Regiospecifique de 1,2,5-Thiadiazolidines 1,1-Dioxydes Chirales. Phosphorus, Sulfur and Silicon and the Related Elements, 2003, 178, 693-705.	1.6	15
179	Cytotoxicity, DNA Damage, and Apoptosis Induced by New Fotemustine Analogs on Human Melanoma Cells in Relation to O6-Methylguanine DNA-Methyltransferase Expression. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 816-823.	2.5	29
180	Synthesis of new targretin® analogues that induce apoptosis in leukemia HL-60 cells. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3529-3532.	2.2	6

#	Article	IF	CITATIONS
181	N-(tert-Butoxycarbonyl)-N-[4- (dimethylazaniumylidene)-1,4- dihydropyridin-1-ylsulfonyl]azanide: A New Sulfamoylating Agent. Structure and Reactivity toward Amines. Organic Letters, 2001, 3, 2241-2243.	4.6	44
182	N-(tert-Butoxycarbonyl)-N-[4-(dimethylazaniumylidene)-1,4-dihydropyridin-1-ylsulfonyl] Azanide:  A New Sulfamoylating Agent. Structure and Reactivity toward Amines. Organic Letters, 2001, 3, 2939-2939.	4.6	33
183	A convenient method for the alkylation of sulfamides using alkyl bromides and Mitsunobu betaine. Tetrahedron Letters, 2001, 42, 601-603.	1.4	10
184	Synthesis and biological activity of glycosyl conjugates of N-(4-hydroxyphenyl)retinamide. Il Farmaco, 2001, 56, 319-324.	0.9	10
185	Synthesis of Multiply Substituted, Ion Channel Forming Octi(p-phenylene)s:  Theme and Variations. Organic Letters, 2000, 2, 37-39.	4.6	36
186	SYNTHESIS AND BIOLOGICAL ACTIVITY OF A RETINYL PHOSPHONIC ACID DERIVATIVE AN ANALOG OF RETINYL PHOSPHATE: HOMORETINYLPHOSPHONIC ACID. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 152, 241-256.	1.6	3
187	Rigid Pushâ^'Pull Oligo(p-Phenylene) Rods:Â Depolarization of Bilayer Membranes with Negative Membrane Potential. Journal of the American Chemical Society, 1999, 121, 7961-7962.	13.7	80
188	A Simple, General and Efficient Method for O and N-Retinoylation. Application to The Synthesis of 2-Retinoyl-Lecithin. Synthetic Communications, 1998, 28, 2945-2958.	2.1	11
189	One-Pot Synthesis of Nucleosides Using Bismuth(III) Bromide as Catalyst Synthetic Communications, 1998, 28, 603-606.	2.1	7
190	ETUDE DE LA RÉACTION DE MICHAELISARBUZOV SOUS ACTIVATION ULTRASONORE. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 129, 83-88.	1.6	8
191	A convenient synthesis of peracetylated glycosyl halides using bismuth(III) halides as catalysts. Carbohydrate Research, 1997, 297, 175-180.	2.3	66
192	Homologation of carboxylic acids by arndt-eistert reaction under ultrasonic waves. Tetrahedron Letters, 1996, 37, 1781-1782.	1.4	37
193	APOBEC3G: A Promising Antiviral Target. , 0, , 981-987.		0
194	Inhibitors of Histidinol Dehydrogenases as Antibacterial Agents. , 0, , 937-949.		2
195	Selectivity Issues in the Design of CA Inhibitors. , 0, , 399-413.		0