Hongchao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fe(III)-Doped g-C ₃ N ₄ Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species. Environmental Science & Technology, 2018, 52, 2197-2205.	10.0	687
2	Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environmental Science & amp; Technology, 2021, 55, 2110-2120.	10.0	252
3	Peroxymonosulfate activation by iron(III)-tetraamidomacrocyclic ligand for degradation of organic pollutants via high-valent iron-oxo complex. Water Research, 2018, 147, 233-241.	11.3	161
4	Singleâ€Atom Fe Catalysts for Fenton‣ike Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	21.0	158
5	Toward Selective Oxidation of Contaminants in Aqueous Systems. Environmental Science & Technology, 2021, 55, 14494-14514.	10.0	145
6	Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)–Peroxymonosulfate Complex. Environmental Science & Technology, 2021, 55, 6397-6406.	10.0	134
7	Simultaneous Oxidation and Sequestration of As(III) from Water by Using Redox Polymer-Based Fe(III) Oxide Nanocomposite. Environmental Science & Technology, 2017, 51, 6326-6334.	10.0	124
8	Mn ₂ O ₃ as an Electron Shuttle between Peroxymonosulfate and Organic Pollutants: The Dominant Role of Surface Reactive Mn(IV) Species. Environmental Science & Technology, 2022, 56, 4498-4506.	10.0	116
9	Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway. Science of the Total Environment, 2019, 675, 62-72.	8.0	108
10	Arsenate Adsorption by Hydrous Ferric Oxide Nanoparticles Embedded in Cross-linked Anion Exchanger: Effect of the Host Pore Structure. ACS Applied Materials & Interfaces, 2016, 8, 3012-3020.	8.0	85
11	Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. Water Research, 2021, 202, 117397.	11.3	72
12	Overturned Loading of Inert CeO ₂ to Active Co ₃ O ₄ for Unusually Improved Catalytic Activity in Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	70
13	Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. Applied Catalysis B: Environmental, 2021, 298, 120537.	20.2	53
14	N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants. Chemical Engineering Journal, 2021, 403, 126395.	12.7	50
15	Self-enhanced ozonation of benzoic acid at acidic pHs. Water Research, 2015, 73, 9-16.	11.3	46
16	Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation. Journal of Hazardous Materials, 2021, 409, 124920.	12.4	46
17	New Insights into the Activation of Peracetic Acid by Co(II): Role of Co(II)-Peracetic Acid Complex as the Dominant Intermediate Oxidant. ACS ES&T Engineering, 2021, 1, 1432-1440.	7.6	33
18	Degradation of roxarsone in UV-based advanced oxidation processes: A comparative study. Journal of Hazardous Materials, 2021, 410, 124558.	12.4	28

Ηονςςμαό Li

#	Article	IF	CITATIONS
19	Revisiting the Heterogeneous Peroxymonosulfate Activation by MoS ₂ : a Surface Mo–Peroxymonosulfate Complex as the Major Reactive Species. ACS ES&T Water, 2022, 2, 376-384.	4.6	23
20	Degradation of organic contaminants in the CoFe2O4/peroxymonosulfate process: The overlooked role of Co(II)-PMS complex. Chemical Engineering Journal Advances, 2021, 8, 100143.	5.2	20
21	Highly efficient and environmentally benign As(III) pre-oxidation in water by using a solid redox polymer. Chemosphere, 2017, 175, 300-306.	8.2	11
22	Construction of model platforms to probe the confinement effect of nanocomposite-enabled water treatment. Chemical Engineering Journal Advances, 2022, 9, 100229.	5.2	8
23	Overturned Loading of Inert CeO ₂ to Active Co ₃ O ₄ for Unusually Improved Catalytic Activity in Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	2.0	7
24	Determination of peracetic acid in the presence of hydrogen peroxide based on the catalytic oxidation of ABTS. Chemical Engineering Journal Advances, 2022, 10, 100247.	5.2	6
25	In-situ photothermal activation of peroxydisulfate in a carbon nanotubes membrane-based flow-by reactor toward degradation of contaminants. Chemosphere, 2022, 303, 135119.	8.2	5