Sandeep Singh Dhankhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Fixation of CO ₂ Under Solvent and Co-Catalyst-free Conditions Using a Highly Porous Two-fold Interpenetrated Cu(II)-Metal–Organic Framework. Crystal Growth and Design, 2021, 21, 1233-1241.	1.4	27
2	Construction of a bifunctional Zn(<scp>ii</scp>)–organic framework containing a basic amine functionality for selective capture and room temperature fixation of CO ₂ . Inorganic Chemistry Frontiers, 2020, 7, 72-81.	3.0	46
3	Oxidized graphitic carbon nitride as a sustainable metal-free catalyst for hydrogen transfer reactions under mild conditions. Green Chemistry, 2020, 22, 5084-5095.	4.6	71
4	Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions. Microporous and Mesoporous Materials, 2020, 308, 110314.	2.2	41
5	Coâ€Catalystâ€Free Chemical Fixation of CO ₂ into Cyclic Carbonates by using Metalâ€Organic Frameworks as Efficient Heterogeneous Catalysts. Chemistry - an Asian Journal, 2020, 15, 2403-2427.	1.7	68
6	Construction of highly water-stable fluorinated 2D coordination polymers with various N, N'-donors: Syntheses, crystal structures and photoluminescence properties. Journal of Solid State Chemistry, 2020, 290, 121560.	1.4	4
7	Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO ₂ . New Journal of Chemistry, 2020, 44, 9090-9096.	1.4	15
8	Ruthenium(II)-arene complexes containing ferrocenamide ligands: Synthesis, characterisation and antiproliferative activity against cancer cell lines. Journal of Organometallic Chemistry, 2020, 916, 121247.	0.8	8
9	Environment-friendly, co-catalyst- and solvent-free fixation of CO ₂ using an ionic zinc(<scp>ii</scp>)–porphyrin complex immobilized in porous metal–organic frameworks. Sustainable Energy and Fuels, 2019, 3, 2977-2982.	2.5	57
10	Construction of a 3D porous Co(<scp>ii</scp>) metal–organic framework (MOF) with Lewis acidic metal sites exhibiting selective CO ₂ capture and conversion under mild conditions. New Journal of Chemistry, 2019, 43, 2163-2170.	1.4	35
11	Construction of bifunctional 2-fold interpenetrated Zn(<scp>ii</scp>) MOFs exhibiting selective CO ₂ adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2019, 6, 1058-1067.	3.0	48
12	A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous and Mesoporous Materials, 2019, 280, 372-378.	2.2	69
13	Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents. Green Chemistry, 2019, 21, 6012-6026.	4.6	107
14	Exceptionally Stable and 20-Connected Lanthanide Metal–Organic Frameworks for Selective CO ₂ Capture and Conversion at Atmospheric Pressure. Crystal Growth and Design, 2018, 18, 2432-2440.	1.4	95
15	Ruthenium(<scp>ii</scp>) arene NSAID complexes: inhibition of cyclooxygenase and antiproliferative activity against cancer cell lines. Dalton Transactions, 2018, 47, 517-527.	1.6	66
16	RAPTA complexes containing Nâ€substituted Tetrazole scaffolds: Synthesis, characterization and Antiproliferative activity. Applied Organometallic Chemistry, 2018, 32, e4179.	1.7	8
17	Rational Design of a 3D Mn ^{II} â€Metal–Organic Framework Based on a Nonmetallated Porphyrin Linker for Selective Capture of CO ₂ and Oneâ€Pot Synthesis of Styrene Carbonates. Chemistry - A European Journal, 2018, 24, 16662-16669.	1.7	65
18	Interpenetrated Metal–Organic Frameworks of Cobalt(II): Structural Diversity, Selective Capture, and Conversion of CO ₂ . Crystal Growth and Design, 2017, 17, 3295-3305.	1.4	53

#	Article	IF	CITATIONS
19	Construction of 3D homochiral metal–organic frameworks (MOFs) of Cd(<scp>ii</scp>): selective CO ₂ adsorption and catalytic properties for the Knoevenagel and Henry reaction. Inorganic Chemistry Frontiers, 2017, 4, 348-359.	3.0	57
20	Rational Design of a Bifunctional, Twoâ€Fold Interpenetrated Zn ^{II} â€Metal–Organic Framework for Selective Adsorption of CO ₂ and Efficient Aqueous Phase Sensing of 2,4,6â€Trinitrophenol. Chemistry - A European Journal, 2017, 23, 16204-16212.	1.7	100
21	Frontispiece: Rational Design of a Bifunctional, Twoâ€Fold Interpenetrated Zn ^{II} â€Metal–Organic Framework for Selective Adsorption of CO ₂ and Efficient Aqueous Phase Sensing of 2,4,6â€Trinitrophenol. Chemistry - A European Journal, 2017, 23, .	1.7	1
22	Green synthesis, optical and magnetic properties of a Mn ^{II} metal–organic framework (MOF) that exhibits high heat of H ₂ adsorption. RSC Advances, 2016, 6, 86468-86476.	1.7	18
23	Construction of 3-Fold-Interpenetrated Three-Dimensional Metal–Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide. Inorganic Chemistry, 2016, 55, 9757-9766.	1.9	78
24	Fine tuning through valence bond tautomerization of ancillary ligands in ruthenium(<scp>ii</scp>) arene complexes for better anticancer activity and enzyme inhibition properties. Dalton Transactions, 2016, 45, 19277-19289.	1.6	10
25	Green Synthesis of a Microporous, Partially Fluorinated Zn ^{II} Paddlewheel Metal–Organic Framework: H ₂ /CO ₂ Adsorption Behavior and Solid‣tate Conversion to a ZnO–C Nanocomposite. European Journal of Inorganic Chemistry, 2015, 2015, 5669-5676.	1.0	28