Franco Decker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8710919/publications.pdf

Version: 2024-02-01

168 papers

4,029 citations

35 h-index 53 g-index

169 all docs

169
docs citations

169 times ranked 3798 citing authors

#	Article	IF	CITATIONS
1	EQCM Analysis of the Process of Electrochemical Insertion in Regioregular Alkyl-Susbtituted Polyterthiophene during n-Doping. Journal of the Electrochemical Society, 2021, 168, 052506.	2.9	4
2	Evidence of Solid-State Polymerization in Regioregular Poly-3′,4′-Didodecyl-2,2′:5′,2′′-Terthiopher Electrochemical Cycling. Journal of the Electrochemical Society, 2021, 168, 066521.	ne During 2.9	1
3	EQCM Analysis of the Insertion Phenomena in a n-Doped Poly-Alkyl-Terthiophene With Regioregular Pattern of Substitution. Frontiers in Chemistry, 2021, 9, 711426.	3.6	2
4	Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications. Frontiers in Chemistry, 2018, 6, 601.	3.6	47
5	An open-source equipment for thin film fabrication by electrodeposition, dip coating, and SILAR. International Journal of Advanced Manufacturing Technology, 2016, 87, 2901-2909.	3.0	5
6	Photoelectrochemical properties of mesoporous NiO x deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres. SpringerPlus, 2015, 4, 564.	1.2	20
7	Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes. Advances in Condensed Matter Physics, 2015, 2015, 1-18.	1.1	23
8	Single precursor route to efficient cobalt sulphide counter electrodes for dye sensitized solar cells. Electrochimica Acta, 2015, 151, 517-524.	5.2	27
9	Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. Materials Research Express, 2014, 1, 015040.	1.6	44
10	Electrochemically deposited ZnO films: an XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing. Journal of Solid State Electrochemistry, 2014, 18, 505-513.	2.5	54
11	Photoelectrochemical Response of DSSCs Under Prolonged Reverse Bias and Conduction Band Lowering in Ruâ€Complexâ€Sensitized TiO ₂ . ChemElectroChem, 2014, 1, 1388-1394.	3.4	11
12	Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells. Journal of Applied Electrochemistry, 2013, 43, 191-197.	2.9	38
13	A new simple method to heal defects and to improve electrode passivity of aromatic SAMs on gold. Journal of Electroanalytical Chemistry, 2013, 708, 68-72.	3.8	5
14	Effect of various terminal groups on long-term protective properties of aromatic SAMs on copper in acidic environment. Journal of Electroanalytical Chemistry, 2013, 693, 86-94.	3.8	19
15	Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. Journal of Applied Electrochemistry, 2013, 43, 209-215.	2.9	13
16	Structural Changes of Conjugated Pt-Containing Polymetallaynes Exposed to Gamma Ray Radiation Doses. Journal of Physical Chemistry A, 2012, 116, 8768-8774.	2.5	19
17	Physical and Electrochemical Analysis of an Indoor–Outdoor Ageing Test of Largeâ€Area Dye Solar Cell Devices. ChemPhysChem, 2012, 13, 2925-2936.	2.1	49
18	Enhanced Protective Properties and Structural Order of Self-Assembled Monolayers of Aromatic Thiols on Copper in Contact with Acidic Aqueous Solution. Journal of Physical Chemistry C, 2012, 116, 4628-4636.	3.1	29

#	Article	IF	Citations
19	Optical Behavior of Conjugated Pt-Containing Polymetallaynes Exposed to Gamma-Ray Radiation Doses. Journal of Physical Chemistry B, 2011, 115, 8047-8053.	2.6	15
20	Durable Cu corrosion inhibition in acidic solution by SAMs of Benzenethiol. Journal of Electroanalytical Chemistry, 2011, 657, 192-195.	3.8	16
21	Molecular and Electronic Properties Transferred to Silicon via Wet-Chemistry Surface Nanofunctionalization: Ethynylferrocene on Si(100). Journal of Nanoscience and Nanotechnology, 2010, 10, 2901-2907.	0.9	10
22	Mass transport and charge transfer rates for Co(III)/Co(II) redox couple in a thin-layer cell. Electrochimica Acta, 2010, 55, 4025-4029.	5.2	54
23	Chemical routes to fine tuning the redox potential of monolayers covalently attached on H–Si(100). Electrochimica Acta, 2010, 55, 5733-5740.	5.2	11
24	Impedance measurements of nanoporosity in electrodeposited ZnO films for DSSC. Electrochemistry Communications, 2010, 12, 697-699.	4.7	28
25	Comparison of the protective effect of aromatic thiols adsorbed on copper. Surface and Interface Analysis, 2010, 42, 601-604.	1.8	11
26	Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions. Physical Chemistry Chemical Physics, 2010, 12, 9230.	2.8	57
27	Thermal activation of mass transport and charge transfer at Pt in the I3â°'/lâ^' electrolyte of a dye-sensitized solar cell. Physical Chemistry Chemical Physics, 2010, 12, 10786.	2.8	10
28	Fullerenes Covalently Anchored On Si(100): An Experimental Study. , 2009, , .		0
29	Chemical routes to molecular SAMs on H-Si(100) with distinct and well-defined redox potentials. Superlattices and Microstructures, 2009, 46, 40-43.	3.1	7
30	Role of the extent of -electron conjugation in visible-light assisted molecular anchoring on $Si(111)$ surfaces. Superlattices and Microstructures, 2009, 46, 30-33.	3.1	10
31	Using EIS for diagnosis of dye-sensitized solar cells performance. Journal of Applied Electrochemistry, 2009, 39, 2291-2295.	2.9	79
32	A multi-technique approach to the analysis of SAMs of aromatic thiols on copper. Physical Chemistry Chemical Physics, 2009, 11, 11624.	2.8	27
33	On the effect of Al2O3 blocking layer on the performance of dye solar cells with cobalt based electrolytes. Applied Physics Letters, 2009, 94, 173113.	3.3	36
34	Functionalization of Si(100) with ferrocene derivatives via "click―chemistry. Electrochimica Acta, 2008, 53, 3903-3909.	5.2	66
35	XPS and TOF-SIMS study of the distribution of Li ions in thin films of vanadium pentoxide after electrochemical intercalation. Surface and Interface Analysis, 2008, 40, 746-750.	1.8	7
36	Tuning the redox potential in molecular monolayers covalently bound to H–Si(100) electrodes via distinct C–C tethering arms. Superlattices and Microstructures, 2008, 44, 542-549.	3.1	10

#	Article	IF	Citations
37	Redox-active Si(100) surfaces covalently functionalised with [60]fullerene conjugates: new hybrid materials for molecular-based devices. Journal of Materials Chemistry, 2008, 18, 1570.	6.7	33
38	Li+ distribution into V2O5 films resulting from electrochemical intercalation reactions. Journal of the Brazilian Chemical Society, 2008, 19, 667-671.	0.6	9
39	Spatial, energy, and time-dependent study of surface charging using spectroscopy and microscopy techniques. Journal of Applied Physics, 2007, 102, 114505.	2.5	2
40	Metalloporphyrins as molecular precursors of electroactive hybrids: A characterization of their actual electronic states on Si(100) and (111) by AFM and XPS. Materials Science and Engineering C, 2007, 27, 1351-1354.	7.3	12
41	lonic liquids in electrochromic devices. Electrochimica Acta, 2007, 52, 4792-4797.	5.2	58
42	Measurement and DFT Calculation of Fe(cp)2Redox Potential in Molecular Monolayers Covalently Bound to Hâ [^] Si(100). Journal of Physical Chemistry B, 2006, 110, 22961-22965.	2.6	43
43	Electrochemical Reversibility of Vinylferrocene Monolayers Covalently Attached on H-Terminated p-Si(100). Journal of Physical Chemistry B, 2006, 110, 7374-7379.	2.6	71
44	Distribution of intercalated lithium in V2O5 thin films determined by SIMS depth profiling. Surface and Interface Analysis, 2006, 38, 847-850.	1.8	12
45	Alkali ion intercalation in V2O5: preparation and laboratory characterization of thin films produced by ALD. Surface and Interface Analysis, 2006, 38, 815-818.	1.8	12
46	A mild functionalization route to robust molecular electroactive monolayers on Si(100). Materials Science and Engineering C, 2006, 26, 840-845.	7.3	23
47	Effect of the organic–inorganic template ICS-PPG on sol–gel deposited V2O5 electrochromic thin film. Solar Energy Materials and Solar Cells, 2006, 90, 434-443.	6.2	10
48	XPS and electrochemical studies of ferrocene derivatives anchored on n- and p-Si(100) by Si–O or Si–C bonds. Journal of Electroanalytical Chemistry, 2005, 579, 133-142.	3.8	94
49	An AFM, XPS and electrochemical study of molecular electroactive monolayers formed by wet chemistry functionalization of H-terminated Si(100) with vinylferrocene. Surface Science, 2005, 575, 260-272.	1.9	66
50	XPS study of the Li intercalation process in sol-gel-produced V2O5 thin film: influence of substrate and film synthesis modification. Surface and Interface Analysis, 2005, 37, 1092-1104.	1.8	37
51	Sol-Gel Synthesis of Vanadate-Based Thin Films as Counter Electrodes in Electrochromic Devices. Journal of Sol-Gel Science and Technology, 2003, 26, 1071-1074.	2.4	13
52	XPS and IR studies of transparent InVO4 films upon Li charge–discharge reactions. Solid State Ionics, 2003, 165, 89-96.	2.7	21
53	Lithium intercalation on amorphous V2O5 thin film, obtained by r.f. deposition, usingin situ sample transfer for XPS analysis. Surface and Interface Analysis, 2003, 35, 897-905.	1.8	18
54	Surface analyses of In–V oxide films aged electrochemically by Li insertion reactions. Physical Chemistry Chemical Physics, 2003, 5, 5489-5498.	2.8	6

#	Article	IF	Citations
55	Indiumâ^'Vanadium Oxides Deposited by Radio Frequency Sputtering:  New Thin Film Transparent Materials for Li-Insertion Electrochemical Devices. Chemistry of Materials, 2002, 14, 636-642.	6.7	18
56	An electrochemical cell for study by XPS of lithium intercalation in oxide films. Surface and Interface Analysis, 2002, 34, 619-622.	1.8	7
57	Use of the absolute Auger parameter for vanadium in the study of the dielectric relaxation of cerium vanadate. Surface and Interface Analysis, 2002, 33, 533-538.	1.8	8
58	Surface evolution of Ni-V transparent oxide films upon Li insertion reactions. Surface and Interface Analysis, 2002, 33, 815-824.	1.8	12
59	Study of lithium diffusion in RF sputtered Nickel–Vanadium mixed oxides thin films. Electrochimica Acta, 2002, 47, 2231-2238.	5.2	23
60	Charge and colour diffusivity from PITT in electrochromic LixWO3 sputtered films. Journal of Electroanalytical Chemistry, 2002, 537, 125-134.	3.8	13
61	Title is missing!. Journal of Sol-Gel Science and Technology, 2002, 23, 53-66.	2.4	35
62	Title is missing!. Journal of Sol-Gel Science and Technology, 2002, 23, 165-181.	2.4	27
63	Thin Film Counterelectrodes with High Li Charge Capacity for Electrochromic Windows. Monatshefte Fýr Chemie, 2001, 132, 83-95.	1.8	2
64	Organic-Inorganic Sol-Gel Hybrids with Ionic Properties. Monatshefte Fýr Chemie, 2001, 132, 103-112.	1.8	10
65	Use of XPS for the study of cerium-vanadium (electrochromic) mixed oxides. Surface and Interface Analysis, 2001, 31, 255-264.	1.8	71
66	Electrochemical and optical characterization of RF-sputtered thin films of vanadium–nickel mixed oxides. Electrochimica Acta, 2001, 46, 2257-2262.	5.2	13
67	Sputter deposited cerium–vanadium oxide: optical characterization and electrochromic behavior. Electrochimica Acta, 2001, 46, 2085-2090.	5.2	28
68	Photoelectrochemical behavior of LiCoO2 membrane electrode. Journal of Electroanalytical Chemistry, 2001, 501, 253-259.	3.8	29
69	Lithium diffusion in cerium–vanadium mixed oxide thin films: a systematic study. Electrochimica Acta, 2001, 46, 2069-2075.	5.2	43
70	Fe-containing CeVO4 films as Li intercalation transparent counter-electrodes. Electrochimica Acta, 2001, 46, 2077-2084.	5.2	24
71	Use of the bending-beam-method for the study of the anodic oxidation of Si in dilute fluoride media. Electrochimica Acta, 2000, 45, 4607-4613.	5.2	7
72	A comparative study of isomeric polydialkylterthiophenes with regular regiochemistry of substitution. Electrochemical synthesis. Polymer, 2000, 41, 6473-6480.	3.8	17

#	Article	IF	Citations
73	Photoelectrochemical response and differential capacitance of poly(3-methylthiophene). Solar Energy Materials and Solar Cells, 2000, 60, 27-41.	6.2	17
74	Monitoring Anodic Silicon Dissolution in Acidic Fluoride Electrolyte by the Mirage Effect. Journal of Porous Materials, 2000, 7, 17-22.	2.6	2
75	Non invasive in-situ techniques for the characterization of processes at thin film electrodes., 1999,,.		0
76	In-situ detection of stress in oxide films during Si electrodissolution in acidic fluoride electrolytes. Journal of Electroanalytical Chemistry, 1999, 474, 182-187.	3.8	23
77	Stress changes in electrochromic thin film electrodes:. Solar Energy Materials and Solar Cells, 1999, 56, 213-221.	6.2	11
78	Investigation by electrochemical and deflectometric techniques of silicon dissolution and passivation in alkali. Electrochemistry Communications, 1999, 1, 483-487.	4.7	23
79	EQCM Characterization of some substituted polyterthiophenes. Electrochimica Acta, 1999, 44, 1911-1917.	5.2	16
80	Sputter-deposited cerium vanadium mixed oxide as counter-electrode for electrochromic devices. Electrochimica Acta, 1999, 44, 3117-3119.	5.2	24
81	Optical and electrochemical properties of cerium–zirconium mixed oxide thin films deposited by sol–gel and r.f. sputtering. Electrochimica Acta, 1999, 44, 3149-3156.	5.2	33
82	Electrochemical characterization of optically passive CeVO4 counterelectrodes. Electrochimica Acta, 1999, 44, 3157-3164.	5.2	84
83	Electrochemical impedance spectroscopy of polyalkylterthiophenes. Electrochimica Acta, 1999, 44, 4189-4193.	5.2	35
84	Optically passive cerium containing counter-electrodes for electrochromic devices. Ionics, 1999, 5, 80-85.	2.4	7
85	Electrosynthesis and characterization of poly(3-methylthiophene) on different substrates. Journal of Solid State Electrochemistry, 1999, 3, 352-356.	2.5	12
86	Pseudocritical NMR frequency shift above the normal-incommensurate phase transition. European Physical Journal B, 1999, 8, 507-510.	1.5	1
87	Comparative Study of Isomeric Polyalkylterthiophenes with Regular Regiochemistry of Substitution:Â Characterization of Electrochemical Doping Process. Chemistry of Materials, 1999, 11, 3484-3489.	6.7	9
88	Study of polyalkylterthiophenes deposition. Synthetic Metals, 1999, 101, 22.	3.9	6
89	Electrochemical Growth of Polyalkylthiophenes. In Situ Characterization of Deposition Processes. Electrochemical and Solid-State Letters, 1999, 1, 217.	2.2	14
90	$$ $$ $$ $$ $$ $$ $$ $$ $$		1

#	Article	IF	CITATIONS
91	<title>Optical characterization of cerium-vanadium mixed oxide films for electrochromic devices</title> ., 1999,,.		1
92	Stress in thin films of metal oxide electrodes for intercalation reactions. Electrochimica Acta, 1998, 43, 2919-2923.	5.2	19
93	Photoelectrochemical response and photoconductivity of poly(3-methylthiophene). Electrochimica Acta, 1998, 44, 753-761.	5.2	12
94	Probe beam deflection study of p-Si electrodissolution in acidic fluoride medium in the oscillating regimes. Journal of Electroanalytical Chemistry, 1998, 446, 7-11.	3.8	12
95	NMR-evidence for absence of floating in structurally incommensurate crystals. Ferroelectrics, 1998, 208-209, 201-212.	0.6	6
96	Anodic Silicon Dissolution in Acidic Fluoride Electrolyte. A Probe Beam Deflection Investigation. Journal of Physical Chemistry B, 1998, 102, 4779-4784.	2.6	12
97	Polymer Films on Electrodes. 28. Scanning Electrochemical Microscopy Study of Electron Transfer at Poly(alkylterthiophene) Films. Chemistry of Materials, 1998, 10, 2120-2126.	6.7	45
98	Ion Potential Diagrams for Electrochromic Devices. Journal of the Electrochemical Society, 1998, 145, 4212-4218.	2.9	8
99	<pre><title>Optical and mechanical properties of tungsten bronzes: a comparative study of M<formula><inf><roman>x</roman></inf></formula> with different ions</title>., 1997,,.</pre>		O
100	Preparation and Photoelectrochemistry of Semiconducting WS2Thin Films. Journal of Physical Chemistry B, 1997, 101, 2485-2490.	2.6	43
101	Structural assessment of the electrochemical performance of LixCoO2 membrane electrodes by X-ray diffraction and absorption refinements. Ionics, 1997, 3, 345-355.	2.4	14
102	lon potential diagrams as guidelines for stability and performance of electrochromic devices. Ionics, 1997, 3, 420-426.	2.4	2
103	Electrochemically intercalated M X C 60 thin films in a solid state cell (M=Li, K): Optical and photoelectrochemical characterization. Applied Physics A: Materials Science and Processing, 1996, 63, 487-494.	2.3	1
104	XAS and electrochemical characterization of lithium intercalated V2O5 xerogels. Solid State Ionics, 1996, 90, 5-14.	2.7	58
105	Photoelectrochemistry of the insertion compounds NaxInSe and LixInSe. Solid State Ionics, 1996, 92, 55-63.	2.7	2
106	A comparison of the electrochromic properties of WO3 films intercalated with H+, Li+ and Na+. Journal of Applied Electrochemistry, 1996, 26, 647-653.	2.9	91
107	Raman investigation on thinâ€film electrodes ofa :Li. Journal of Applied Physics, 1996, 80, 2442-2452.	2.5	7
108	Stress in Carbon Film Electrodes during Li +  Electrochemical Intercalation. Journal of the Electrochemical Society, 1996, 143, 2417-2421.	2.9	50

#	Article	IF	Citations
109	The electrochromic response of tungsten bronzes MxWO3 with different ions and insertion rates. Solar Energy Materials and Solar Cells, 1995, 39, 301-307.	6.2	30
110	Preparation of n―and p â€â€‰InP Films by  PH 3 Treatment of Electrodeposited In Layers. Journal Electrochemical Society, 1995, 142, 1267-1272.	of the	8
111	Evolution of Surface Textures on n â€â€‰InP Samples Etched Photoelectrochemically. Journal of the Electrochemical Society, 1995, 142, 1348-1352.	2.9	21
112	Electroacoustics in a silicon solar cell. Applied Physics A: Materials Science and Processing, 1995, 61, 447-452.	2.3	1
113	The Electronic and the Ionic Contribution to the Free Energy of Alkali Metals in Intercalation Compounds. Journal of the Electrochemical Society, 1994, 141, 2297-2300.	2.9	54
114	Spectroscopic investigations of Li-intercalated V2O5 polycrystalline films. Solid State Ionics, 1994, 70-71, 412-416.	2.7	27
115	The mirage effect with a supporting electrolyte at constant mass transfer through the diffusion layer. Journal of Electroanalytical Chemistry, 1994, 365, 165-169.	3.8	6
116	Characterization of electrodeposited TiO2 films. Electrochimica Acta, 1993, 38, 37-42.	5.2	10
117	From photocorrosion to photoelectrochemical etching. Electrochimica Acta, 1993, 38, 95-99.	5.2	13
118	Stress and electrochromism induced by Li insertion in crystalline and amorphous V2O5 thin film electrodes. Electrochimica Acta, 1993, 38, 1637-1642.	5. 2	63
119	A mirage effect analysis of the electrochemical processes in nickel hydroxide electrodes. Journal of Electroanalytical Chemistry, 1993, 354, 273-279.	3.8	19
120	The mirage effect: A sensitive probe for electrochemical cell calorimetry. Journal of Electroanalytical Chemistry, 1993, 346, 119-133.	3.8	17
121	Thin metal oxide films on transparent substrates for Li-insertion devices. Journal of Applied Electrochemistry, 1993, 23, 1187-1195.	2.9	26
122	The intercalation front in electrochromic nickel oxide electrodes: an optical analysis. Journal of Physics Condensed Matter, 1993, 5, A323-A324.	1.8	4
123	H Insertion and Electrochromism in NiO $\rm x$ Thin Films. Journal of the Electrochemical Society, 1992, 139, 1236-1239.	2.9	46
124	Thermal wave electroacoustic calorimetry in a Si photovoltaic cell. Applied Physics A: Solids and Surfaces, 1992, 54, 1-5.	1.4	2
125	Photoelectrochemical etching of n-InP producing antireflecting structures for solar cells. Solar Energy Materials and Solar Cells, 1992, 25, 179-189.	6.2	11
126	The electrochromic process in non-stoichiometric nickel oxide thin film electrodes. Electrochimica Acta, 1992, 37, 1033-1038.	5. 2	81

#	Article	IF	CITATIONS
127	A Comparison of the Electrochromic Behavior and the Mechanical Properties of  WO 3 and NiO x Thin Film Electrodes. Journal of the Electrochemical Society, 1991, 138, 3182-3186.	2.9	36
128	Anodic niobium pentoxide films: growth and thickness determination by in situ optoelectrochemical measurements. Electrochimica Acta, 1991, 36, 1297-1300.	5.2	9
129	Infrared reflectance spectroscopy of electrochromic NiO _{<i>x</i>} H _{<i>y</i>} films made by reactive dc sputtering. Journal of Materials Research, 1991, 6, 1715-1719.	2.6	33
130	Energy balance analysis of photovoltaic cells by voltage-dependent modulation photocalorimetry. IEEE Transactions on Electron Devices, 1990, 37, 498-508.	3.0	16
131	Acoustic detection of the electrochemical peltier effect. Electrochimica Acta, 1990, 35, 25-26.	5.2	8
132	Electrochromic NiOxHy, hydrated films: cyclic voltammetry and ac impedance spectroscopy in aqueous electrolyte. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 277, 277-290.	0.1	44
133	Characterization of electrochromic dc-sputtered nickel-oxide-based films. , 1990, , .		10
134	A Laser Beam Deflection System for Measuring Stress Variations in Thin Film Electrodes. Journal of the Electrochemical Society, 1990, 137, 1150-1154.	2.9	66
135	The mirage effect under controlled current conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 266, 215-225.	0.1	23
136	In situ measurements of the stress changes in thin-film electrodes. Journal of Physics E: Scientific Instruments, 1989, 22, 755-757.	0.7	16
137	Optical and structural properties of polycrystalline CdSe deposited on titanium substrates. Applied Physics A: Solids and Surfaces, 1988, 46, 107-112.	1.4	47
138	Electrodeposition of CdSe films on SnO2:F coated glass. Solar Energy Materials and Solar Cells, 1988, 17, 247-255.	0.4	13
139	The mirage effect in photoelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 243, 187-191.	0.1	19
140	Infrared photoluminescence at deep centres in polycrystalline CdSe layers. Journal of Physics C: Solid State Physics, 1988, 21, 3141-3150.	1.5	8
141	Electrolyte Electroreflectance and Photoelectrochemical Topological Investigation of Polycrystalline CuInSe2 Electrodes by Scanning Lightâ€Spot Optical Microscopy. Journal of the Electrochemical Society, 1988, 135, 1934-1939.	2.9	13
142	Electrodeposition of CdSe: An In Situ Optical Reflectance Study. Journal of the Electrochemical Society, 1987, 134, 1499-1503.	2.9	4
143	Picosecond time-resolved measurements of fast recombination losses in the photoresponse of semiconductor/liquid junction cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 228, 29-44.	0.1	14
144	Optically monitored electrodeposition of thin CdSe films. Thin Solid Films, 1987, 147, 291-297.	1.8	2

#	Article	IF	CITATIONS
145	Optical losses in solar photoelectrochemical cells. Solar Cells, 1987, 20, 19-26.	0.6	2
146	The mirage effect in electrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 228, 481-486.	0.1	34
147	Electrolyte electroabsorption: A spectroscopic technique for thin film semiconducting electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 218, 347-353.	0.1	8
148	Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Physical Review B, 1987, 36, 4215-4221.	3.2	302
149	Luminescence and photoelectrochemistry of CdS thin film electrodes. Thin Solid Films, 1985, 127, 305-312.	1.8	6
150	Crystal structure, luminescence, and photoelectrochemistry of thin electroplated Cd-chalcogenide layers. Journal of Solid State Chemistry, 1985, 59, 1-8.	2.9	30
151	Growth and dissolution of thin anodic layers on GaAs: A photoelectrochemical study. Electrochimica Acta, 1985, 30, 301-304.	5.2	25
152	Electrochemical growth,in situ optical characterization and photoelectrochemical behaviour of dithio-oxamido copper(II) films. Electrochimica Acta, 1985, 30, 1147-1153.	5.2	4
153	Elkctrodeposition and Photoelectrochemical Properties of Dithiooxamido Copper (II) Films Onto Copper Electrodes. Molecular Crystals and Liquid Crystals, 1985, 121, 337-340.	0.8	4
154	Electroluminescence of Ill–V singleâ€crystal semiconducting electrodes. Journal of Applied Physics, 1985, 57, 2900-2904.	2.5	12
155	Electroluminescence of Polycrystalline CdSe Thin Film Photoelectrodes: A Sensitive Probe for Surface Recombination. Journal of the Electrochemical Society, 1984, 131, 2204-2205.	2.9	11
156	Electroluminescence and Photoluminescence of GaAs in Aqueous Redox Electrolytes. Journal of the Electrochemical Society, 1984, 131, 1173-1178.	2.9	13
157	Optical Anisotropy of Transition Metal Dichalcogenides. A Photoelectrochemical Determination. Physica Status Solidi (B): Basic Research, 1984, 122, 651-659.	1.5	7
158	Preparation and properties of Si/SnO2 heterojunctions. Solar Energy Materials and Solar Cells, 1983, 8, 363-369.	0.4	40
159	Hole Injection and Electroluminescence of n $\hat{a}\in\hat{a}\in\hat{a}\in\hat{a}$ GaAs in the Presence of Aqueous Redox Electrolytes. Journal of the Electrochemical Society, 1983, 130, 1335-1339.	2.9	42
160	Semiconductorâ€Oxide Heterojunctions as Electrodes in Photoelectrochemical Cells. Israel Journal of Chemistry, 1982, 22, 195-198.	2.3	16
161	Photoelectrochemical cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 126, 241-253.	0.1	6
162	Subband Gap Response of TiO2 and SrTiO3 Photoelectrodes. Journal of the Electrochemical Society, 1981, 128, 200-204.	2.9	57

#	Article	lF	CITATIONS
163	Anomalous Behavior on  l  â€â€‰â€‰V  Characteristic Curves of n â€â€‰TiO2 and nâ€ Solution. Journal of the Electrochemical Society, 1980, 127, 2067-2071.	E‰ậ€â€% 2.9ê€%	₀SrTiO3 Elec
164	The reduction of molecular oxygen at single crystal rutile electrodes. Electrochimica Acta, 1980, 25, 521-525.	5.2	49
165	Discussion of "Observation and Analysis of Surface States on TiO2 Electrodes in Aqueous Electrolytes―[R. H. Wilson (pp. 228–234, Vol. 127, No. 1)]. Journal of the Electrochemical Society, 1980, 127, 2754-2755.	2.9	1
166	The Suppression of GaAs Photocorrosion in Aqueous Solutions by Sulfonated Anthraquinones. Journal of the Electrochemical Society, 1980, 127, 2370-2374.	2.9	9
167	Photoelectrolysis of Water with Natural Mineral TiO2 Rutile Electrodes. Journal of the Electrochemical Society, 1980, 127, 2264-2268.	2.9	15
168	Photothermal effect at TiO2electrodes in a photoelectrochemical cell. Applied Physics Letters, 1979, 35, 397-399.	3.3	11