Feng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8710747/publications.pdf

Version: 2024-02-01

156	4,581	36	63
papers	citations	h-index	g-index
162	162	162	1620 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Multivariable neural network to postprocess shortâ€term, hubâ€height wind forecasts. Energy Science and Engineering, 2022, 10, 2561-2575.	1.9	7
2	Symmetry-preserving enforcement of low-dissipation method based on boundary variation diminishing principle. Computers and Fluids, 2022, 233, 105227.	1.3	8
3	A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws. Journal of Computational Physics, 2022, 452, 110899.	1.9	19
4	An Adaptive Nonhydrostatic Atmospheric Dynamical Core Using a Multi-Moment Constrained Finite Volume Method. Advances in Atmospheric Sciences, 2022, 39, 487-501.	1.9	1
5	Deep generative model for probabilistic wind speed and wind power estimation at a wind farm. Energy Science and Engineering, 2022, 10, 1855-1873.	1.9	5
6	Revisit to the THINC/QQ scheme: Recent progress to improve accuracy and robustness. International Journal for Numerical Methods in Fluids, 2022, 94, 719-755.	0.9	4
7	Compact multi-stage reconstruction method on polyhedral unstructured grids: Extension to higher-order finite volume scheme. Computers and Fluids, 2022, 240, 105436.	1.3	O
8	A new 3D OpenFoam solver with improved resolution for hyperbolic systems on hybrid unstructured grids. Applied Mathematical Modelling, 2022, 108, 142-166.	2.2	1
9	A high-fidelity solver based on hybrid numerical methods on unstructured grids for incompressible multiphase flows. Journal of Computational Physics, 2022, , 111299.	1.9	O
10	Self-adjusting steepness-based schemes that preserve discontinuous structures in compressible flows. Journal of Computational Physics, 2022, 463, 111268.	1.9	8
11	A new paradigm of dissipation-adjustable, multi-scale resolving schemes for compressible flows. Journal of Computational Physics, 2022, 466, 111287.	1.9	8
12	A fifth-order low-dissipation discontinuity-resolving TENO scheme for compressible flow simulation. Journal of Computational Physics, 2022, 467, 111465.	1.9	18
13	Boundary variation diminishing algorithm for highâ€order local polynomialâ€based schemes. International Journal for Numerical Methods in Fluids, 2021, 93, 892-907.	0.9	2
14	Arbitrary high-order non-oscillatory scheme on hybrid unstructured grids based on multi-moment finite volume method. Journal of Computational Physics, 2021, 424, 109841.	1.9	2
15	Shock Capturing Scheme Using \hat{I}^2 -Variable THINC Scheme Based on BVD Principle. Journal of the Japan Society for Aeronautical and Space Sciences, 2021, 69, 113-121.	0.0	0
16	A nonnegative and shapeâ€preserving global transport model on cubed sphere using highâ€order conservative collocation scheme. International Journal for Numerical Methods in Fluids, 2021, 93, 1969-1992.	0.9	0
17	Interpreting dynamics of snap-off in a constricted capillary from the energy dissipation principle. Physics of Fluids, 2021, 33, .	1.6	10
18	Low-dissipation BVD schemes for single and multi-phase compressible flows on unstructured grids. Journal of Computational Physics, 2021, 428, 110088.	1.9	17

#	Article	IF	Citations
19	Pore-scale Simulations of Haines Jump and Capillary Filling in Randomly Distributed Pore Structures with Implications for CO ₂ Geological Storage. Journal of MMIJ, 2021, 137, 56-62.	0.4	0
20	Hybrid Discontinuous Galerkin/Finite Volume Method with Subcell Resolution for Shocked Flows. AIAA Journal, 2021, 59, 2027-2044.	1.5	2
21	A Positivity-preserving Conservative Semi-Lagrangian Multi-moment Global Transport Model on the Cubed Sphere. Advances in Atmospheric Sciences, 2021, 38, 1460-1473.	1.9	4
22	THINC scaling method that bridges VOF and level set schemes. Journal of Computational Physics, 2021, 436, 110323.	1.9	16
23	A note on nonâ€negativity correction for a multimoment finiteâ€volume transport model with WENO limiter. Quarterly Journal of the Royal Meteorological Society, 2020, 146,546-556. Implicit large eddy simulation of compressible turbulence flow with view of the compressible turbulence flow with view	1.0	4
24	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">P</mml:mi </mml:mrow><mml:mi>n</mml:mi></mml:msub><mml:mrow>< mathvariant="normal">T>:mi>>:mi><mml:mo< td=""><td>mand:mi</td><td>18</td></mml:mo<></mml:mrow></mml:mrow>	m and :mi	18
25	linebreak="goodbreak">â°' <mml:mrow><mml:mi mathvariant="normal">BVDA conservative solver for surface-tension-driven multiphase flows on collocated unstructured grids. Journal of Computational Physics, 2020, 401, 109025.</mml:mi </mml:mrow>	1.9	8
26	Solution property preserving reconstruction for finite volume scheme: a boundary variation diminishing+multidimensional optimal order detection framework. International Journal for Numerical Methods in Fluids, 2020, 92, 603-634.	0.9	8
27	Design of Hybrid Reconstruction Scheme for Compressible Flow Using Data-Driven Methods. Journal of Mechanics, 2020, 36, 675-689.	0.7	1
28	Solution property preserving reconstruction BVD+MOOD scheme for compressible euler equations with source terms and detonations. Computers and Fluids, 2020, 206, 104594.	1.3	5
29	Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm. Computers and Fluids, 2020, 200, 104433.	1.3	22
30	A Two-Stage Fourth-Order Multimoment Global Shallow-Water Model on the Cubed Sphere. Monthly Weather Review, 2020, 148, 4267-4279.	0.5	1
31	High resolution multi-moment finite volume method for supersonic combustion on unstructured grids. Applied Mathematical Modelling, 2019, 66, 404-423.	2.2	13
32	A 3D Nonhydrostatic Compressible Atmospheric Dynamic Core by Multi-moment Constrained Finite Volume Method. Advances in Atmospheric Sciences, 2019, 36, 1129-1142.	1.9	3
33	Multi-moment finite volume method for incompressible flows on unstructured moving grids and its application to fluid-rigid body interactions. Computers and Structures, 2019, 221, 91-110.	2.4	8
34	High-order multi-moment finite volume method with smoothness adaptive fitting reconstruction for compressible viscous flow. Journal of Computational Physics, 2019, 394, 559-593.	1.9	9
35	Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan. Energies, 2019, 12, 1505.	1.6	5
36	A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm. Journal of Computational Physics, 2019, 386, 323-349.	1.9	45

#	Article	IF	Citations
37	A new formulation for two-wave Riemann solver accurate at contact interfaces. Physics of Fluids, 2019, 31, .	1.6	30
38	Uncertainty quantification of shock–bubble interaction simulations. Shock Waves, 2019, 29, 1191-1204.	1.0	2
39	A Novel Hybrid Model of WRF and Clearness Index-Based Kalman Filter for Day-Ahead Solar Radiation Forecasting. Applied Sciences (Switzerland), 2019, 9, 3967.	1.3	13
40	LES of primary breakup of pulsed liquid jet in supersonic crossflow. Acta Astronautica, 2019, 154, 119-132.	1.7	23
41	Development of a less-dissipative hybrid AUSMD scheme for multi-component flow simulations. Shock Waves, 2019, 29, 691-704.	1.0	6
42	High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. Journal of Computational Physics, 2018, 371, 945-966.	1.9	80
43	An ALE formulation for compressible flows based on multi-moment finite volume method. Engineering Applications of Computational Fluid Mechanics, 2018, 12, 791-809.	1.5	2
44	Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts. Computers and Fluids, 2018, 171, 1-14.	1.3	51
45	A nonâ€oscillatory multimoment finiteâ€volume global transport model on a cubedâ€sphere grid using the WENO slope limiter. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1611-1627.	1.0	6
46	Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations. Journal of Computational Physics, 2018, 373, 284-303.	1.9	36
47	New Accurate and Efficient Method for Stiff Detonation Capturing. AIAA Journal, 2018, 56, 4024-4038.	1.5	8
48	A Direct ALE Multi-Moment Finite Volume Scheme for the Compressible Euler Equations. Communications in Computational Physics, 2018, 24, .	0.7	5
49	A semiâ€Lagrangian multiâ€moment finite volume method with fourthâ€order WENO projection. International Journal for Numerical Methods in Fluids, 2017, 83, 351-375.	0.9	8
50	Development of a hybrid parallel MCV-based high-order global shallow-water model. Journal of Supercomputing, 2017, 73, 2823-2842.	2.4	5
51	Simulation of drop deformation and breakup in supersonic flow. Proceedings of the Combustion Institute, 2017, 36, 2417-2424.	2.4	23
52	A hybrid pressure–density-based Mach uniform algorithm for 2D Euler equations on unstructured grids by using multi-moment finite volume method. Journal of Computational Physics, 2017, 335, 637-663.	1.9	27
53	Effects of Mach number on primary breakup of liquid jets in gas crossflow. , 2017, , .		0
54	A finite volume multi-moment method with boundary variation diminishing principle for Euler equation on three-dimensional hybrid unstructured grids. Computers and Fluids, 2017, 153, 85-101.	1.3	18

#	Article	IF	CITATIONS
55	Multimoment Finite Volume Solver for Euler Equations on Unstructured Grids. AIAA Journal, 2017, 55, 2617-2629.	1.5	12
56	Accurate and robust PISO algorithm on hybrid unstructured grids using the multimoment finite volume method. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 146-172.	0.6	17
57	A Non-oscillatory Multi-Moment Finite Volume Scheme with Boundary Gradient Switching. Journal of Scientific Computing, 2017, 72, 1146-1168.	1.1	4
58	Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature. Journal of Computational Physics, 2017, 349, 415-440.	1.9	64
59	An LES Turbulent Inflow Generator using A Recycling and Rescaling Method. Flow, Turbulence and Combustion, 2017, 98, 663-695.	1.4	13
60	An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. International Journal of Multiphase Flow, 2017, 89, 375-398.	1.6	37
61	An MCV Nonhydrostatic Atmospheric Model with Height-Based Terrain following Coordinate: Tests of Waves over Steep Mountains. Advances in Meteorology, 2016, 2016, 1-12.	0.6	1
62	Simulation of all-scale atmospheric dynamics on unstructured meshes. Journal of Computational Physics, 2016, 322, 267-287.	1.9	19
63	A wind power forecasting system based on the weather research and forecasting model and Kalman filtering over a wind-farm in Japan. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	23
64	An integrated wind-forecast system based on the weather research and forecasting model, Kalman filter, and data assimilation with nacelle-wind observation. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	9
65	GPU-accelerated large-scale simulations of interfacial multiphase fluids for real-case applications. Computers and Fluids, 2016, 141, 235-249.	1.3	2
66	Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes. Journal of Computational Physics, 2016, 322, 309-325.	1.9	87
67	A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows. Journal of Computational Physics, 2016, 327, 747-778.	1.9	34
68	The Multi-Moment Finite Volume Solver for Incompressible Navier-Stokes Equations on Unstructured Grids. Modeling and Simulation in Science, Engineering and Technology, 2016, , 97-109.	0.4	0
69	A robust interface method for drop formation and breakup simulation at high density ratio using an extrapolated liquid velocity. Computers and Fluids, 2016, 136, 402-420.	1.3	23
70	Large eddy simulation of liquid jet primary breakup in supersonic air crossflow. International Journal of Multiphase Flow, 2016, 87, 229-240.	1.6	62
71	A Slope Constrained 4th Order Multi-Moment Finite Volume Method with WENO Limiter. Communications in Computational Physics, 2015, 18, 901-930.	0.7	13
72	A highâ€order multiâ€moment constrained finiteâ€volume global shallowâ€water model on the Yinâ€Yang grid. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2090-2102.	1.0	9

#	Article	IF	CITATIONS
73	A high-order conservative collocation scheme and its application to global shallow-water equations. Geoscientific Model Development, 2015, 8, 221-233.	1.3	5
74	Fifth Order Multi-moment WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2015, 64, 477-507.	1.1	7
75	A WENO-type Limiter for 4th Order Constrained Derivative Flux Reconstruction Method., 2015, , .		0
76	Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. Journal of Computational Physics, 2014, 271, 191-223.	1.9	27
77	Frontiers in Computational Physics: Modeling the Earth System. Journal of Computational Physics, 2014, 271, 1.	1.9	2
78	A global shallowâ€water model on an icosahedral–hexagonal grid by a multiâ€moment constrained finiteâ€volume scheme. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 639-650.	1.0	12
79	An interface capturing method with a continuous function: The THINC method on unstructured triangular and tetrahedral meshes. Journal of Computational Physics, 2014, 259, 260-269.	1.9	46
80	LES of turbulent liquid jet primary breakup in turbulent coaxial air flow. International Journal of Multiphase Flow, 2014, 60, 103-118.	1.6	87
81	An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation. International Journal for Numerical Methods in Fluids, 2014, 76, 1025-1042.	0.9	49
82	A multi-moment finite volume method for incompressible Navier–Stokes equations on unstructured grids: Volume-average/point-value formulation. Journal of Computational Physics, 2014, 277, 138-162.	1.9	53
83	Two and three dimensional multi-moment finite volume solver for incompressible Navier–Stokes equations on unstructured grids with arbitrary quadrilateral and hexahedral elements. Computers and Fluids, 2014, 104, 40-54.	1.3	27
84	An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach. Journal of Computational Physics, 2014, 268, 326-354.	1.9	101
85	A note on the general multi-moment constrained flux reconstruction formulation for high order schemes. Applied Mathematical Modelling, 2013, 37, 5092-5108.	2.2	13
86	An accurate multimoment constrained finite volume transport model on Yin-Yang grids. Advances in Atmospheric Sciences, 2013, 30, 1320-1330.	1.9	10
87	Simulation and mitigation of the magneto-Rayleigh-Taylor instabilities in Z-pinch gas discharge extreme ultraviolet plasma radiation sources. Physics of Plasmas, 2013, 20, .	0.7	7
88	A 3D Numerical Model for Free Interfacial Flows and Applications to Offshore Waves with Submerged Obstacles. Applied Mechanics and Materials, 2013, 444-445, 544-548.	0.2	0
89	A Multimoment Constrained Finite-Volume Model for Nonhydrostatic Atmospheric Dynamics. Monthly Weather Review, 2013, 141, 1216-1240.	0.5	23
90	Fourth order transport model on Yin-Yang grid by multi-moment constrained innite volume scheme. Procedia Computer Science, 2012, 9, 1004-1013.	1.2	6

#	Article	IF	CITATIONS
91	An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction. Journal of Computational Physics, 2012, 231, 2328-2358.	1.9	124
92	Revisit to the THINC scheme: A simple algebraic VOF algorithm. Journal of Computational Physics, 2011, 230, 7086-7092.	1.9	177
93	A multiâ€moment transport model on cubedâ€sphere grid. International Journal for Numerical Methods in Fluids, 2011, 67, 1993-2014.	0.9	9
94	Global advection transport model on hexagonal-pentagonal geodesic grid by multi-moment scheme. Procedia Computer Science, 2011, 4, 2327-2336.	1.2	1
95	An Adaptive Multimoment Global Model on a Cubed Sphere. Monthly Weather Review, 2011, 139, 523-548.	0.5	22
96	A Global Multimoment Constrained Finite-Volume Scheme for Advection Transport on the Hexagonal Geodesic Grid. Monthly Weather Review, 2011, 140, 941-955.	0.5	17
97	Multiphase Fluid Simulations on a Multiple GPGPU PC Using Unsplit Time Integration VSIAM3. Progress in Nuclear Science and Technology, 2011, 2, 491-497.	0.3	3
98	Application of the characteristic CIP method to a shallow water model on the sphere. Advances in Atmospheric Sciences, 2010, 27, 728-740.	1.9	1
99	A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid. Journal of Computational Physics, 2010, 229, 1774-1796.	1.9	44
100	A multi-moment finite volume formulation for shallow water equations on unstructured mesh. Journal of Computational Physics, 2010, 229, 4567-4590.	1.9	22
101	High order multi-moment constrained finite volume method. Part I: Basic formulation. Journal of Computational Physics, 2009, 228, 3669-3707.	1.9	57
102	Shallow water model on cubed-sphere by multi-moment finite volume method. Journal of Computational Physics, 2008, 227, 5019-5044.	1.9	94
103	A CIP/multiâ€moment finite volume method for shallow water equations with source terms. International Journal for Numerical Methods in Fluids, 2008, 56, 2245-2270.	0.9	23
104	Large scale numerical simulations for multi-phase fluid dynamics with moving interfaces. International Journal of Computational Fluid Dynamics, 2008, 22, 405-410.	0.5	6
105	A Multimoment Finite-Volume Shallow-Water Model on the Yin–Yang Overset Spherical Grid. Monthly Weather Review, 2008, 136, 3066-3086.	0.5	42
106	CIP/multi-moment finite volume method for Euler equations: A semi-Lagrangian characteristic formulation. Journal of Computational Physics, 2007, 222, 849-871.	1.9	52
107	A Global Shallow Water Model on the Spherical-Cubic Grid by using CIP/Multi-Moment FVM. , 2007, , 252-252.		0
108	A Finite-Volume Grid Using Multimoments for Geostrophic Adjustment. Monthly Weather Review, 2006, 134, 2515-2526.	0.5	13

#	Article	IF	Citations
109	Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows. Journal of Computational Physics, 2006, 213, 31-56.	1.9	94
110	Conservative constraint for a quasi-uniform overset grid on the sphere. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 979-996.	1.0	38
111	Implementation of the semi-Lagrangian advection scheme on a quasi-uniform overset grid on a sphere. Advances in Atmospheric Sciences, 2006, 23, 792-801.	1.9	15
112	Conservative Semi-Lagrangian Transport on a Sphere and the Impact on Vapor Advection in an Atmospheric General Circulation Model. Monthly Weather Review, 2005, 133, 504-520.	0.5	16
113	Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. Journal of Computational Physics, 2005, 202, 1-19.	1.9	40
114	Numerical simulations of free-interface fluids by a multi-integrated moment method. Computers and Structures, 2005, 83, 409-423.	2.4	55
115	A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments. Computer Physics Communications, 2005, 173, 17-33.	3.0	28
116	A simple algebraic interface capturing scheme using hyperbolic tangent function. International Journal for Numerical Methods in Fluids, 2005, 48, 1023-1040.	0.9	337
117	Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow. Journal of Computational Physics, 2004, 195, 629-654.	1.9	91
118	A convexity preserving scheme for conservative advection transport. Journal of Computational Physics, 2004, 198, 389-402.	1.9	22
119	A New Paradigm of Computer Graphics by Universal Solver for Solid, Liquid and Gas. JSME International Journal Series B, 2004, 47, 656-663.	0.3	1
120	A Simple CIP Finite Volume Method for Incompressible Flows. JSME International Journal Series B, 2004, 47, 664-671.	0.3	4
121	Conservative CIP Transport in Meteorological Models. JSME International Journal Series B, 2004, 47, 725-734.	0.3	8
122	An efficient method for capturing free boundaries in multi-fluid simulations. International Journal for Numerical Methods in Fluids, 2003, 42, 187-210.	0.9	48
123	Implementation of the CIP as the Advection Solver in the MM5. Monthly Weather Review, 2003, 131, 1256-1271.	0.5	5
124	An Accurate Semi-Lagrangian Scheme for Raindrop Sedimentation. Monthly Weather Review, 2003, 131, 974-983.	0.5	9
125	Profile-modifiable Conservative Transport Schemes and a Simple Multi-integrated Moment Formulation for Hydrodynamics. , 2003, , 106-111.		5
126	118 Multi-phase fluid simulations by multi integrated moment formulation based on CIP-CSL Type Schemes. The Proceedings of the JSME Annual Meeting, 2003, 2003.1, 1-2.	0.0	0

#	Article	IF	Citations
127	Conservative and oscillation-less atmospheric transport schemes based on rational functions. Journal of Geophysical Research, 2002, 107, ACL 2-1.	3.3	80
128	Mechanism of structure formation in circular hydraulic jumps: numerical studies of strongly deformed free-surface shallow flows. Physica D: Nonlinear Phenomena, 2002, 161, 202-219.	1.3	34
129	Development of Conservative Front-Capturing Scheme and Applications to Multi-fluid Simulations. The Proceedings of the JSME Annual Meeting, 2002, 2002.3, 301-302.	0.0	5
130	454 Simple Multi-integrated Moment Formulation for Hydrodynamics based on CIP-CSL Type Schemes. The Proceedings of the Computational Mechanics Conference, 2002, 2002.15, 447-448.	0.0	0
131	The Constrained Interpolation Profile Method for Multiphase Analysis. Journal of Computational Physics, 2001, 169, 556-593.	1.9	646
132	Completely Conservative and Oscillationless Semi-Lagrangian Schemes for Advection Transportation. Journal of Computational Physics, 2001, 170, 498-522.	1.9	106
133	Implementations of multi-fluid hydrodynamic simulations on distributed memory computer with a fully parallelizable preconditioned Bi-CGSTAB method. Computer Physics Communications, 2001, 137, 274-285.	3.0	6
134	An Exactly Conservative Semi-Lagrangian Scheme (CIP–CSL) in One Dimension. Monthly Weather Review, 2001, 129, 332-344.	0.5	158
135	F02-4 Direct Computation of Moving Interface with Anti-diffusion scheme. The Proceedings of the Computational Mechanics Conference, 2001, 2001.14, 689-690.	0.0	0
136	A Class of Single-Cell High-Order Semi-Lagrangian Advection Schemes. Monthly Weather Review, 2000, 128, 1165-1176.	0.5	11
137	Relationships between a roller and a dynamic pressure distribution in circular hydraulic jumps. Physical Review E, 2000, 61, R1016-R1019.	0.8	16
138	Multi-phase hydrodynamic simulations on parallel computer. Lecture Notes in Computer Science, 1999, , 157-168.	1.0	0
139	A numerical study of the transition in the circular hydraulic jump. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257, 153-157.	0.9	20
140	An oscillation suppressing semi-Lagrangian solver for advection equation. Computer Physics Communications, 1999, 116, 121-135.	3.0	4
141	A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows. Journal of Computational Physics, 1999, 155, 348-379.	1.9	52
142	A computational model for incompressible flow including surface tension. Communications in Numerical Methods in Engineering, 1999, 15, 887-894.	1.3	1
143	Strategy for unified solution of solid, liquid, gas and plasmas. , 1999, , .		1
144	An efficient numerical model for multi-phase fluid dynamics. Advances in Engineering Software, 1998, 29, 345-352.	1.8	2

#	ARTICLE	lF	CITATIONS
145	A numerical procedure — CIP — to solve all phases of matter together. , 1998, , 439-457.		6
146	An algorithm for simulating solid objects suspended in stratified flow. Computer Physics Communications, 1997, 102, 147-160.	3.0	56
147	Constructing oscillation preventing scheme for advection equation by rational function. Computer Physics Communications, 1996, 93, 1-12.	3.0	100
148	Constructing a multi-dimensional oscillation preventing scheme for the advection equation by a rational function. Computer Physics Communications, 1996, 94, 103-118.	3.0	42
149	Description of complex and sharp interface with fixed grids in incompressible and compressible fluid. Computers and Mathematics With Applications, 1995, 29, 15-25.	1.4	21
150	Simulation technique for dynamic evaporation processes. Nuclear Engineering and Design, 1995, 155, 45-53.	0.8	37
151	Possible explanation of the secondary flash and strong flare on IR lightcurves upon impact of Shoemaker-Levy 9. Geophysical Research Letters, 1995, 22, 2429-2432.	1.5	12
152	A method to trace sharp interface of two fluids in calculations involving shocks. Shock Waves, 1994, 4, 101-107.	1.0	11
153	Effect of EOS on Break-Up of Shoemaker-Levy 9 Entering Jovian Atmosphere Journal of Geomagnetism and Geoelectricity, 1994, 46, 657-662.	0.8	14
154	Description of Complex and Sharp Interface during Shock Wave Interaction with Liquid Drop. Journal of the Physical Society of Japan, 1993, 62, 2537-2540.	0.7	80
155	A Robust and Practical Multi-Moment Finite Volume Model for Computational Fluid Dynamics. Applied Mechanics and Materials, 0, 444-445, 534-538.	0.2	0
156	A hybrid volume of fluid and level set interface capturing scheme with quartic surface representation for unstructured meshes. International Journal for Numerical Methods in Fluids, 0, , .	0.9	3