Roop Mallik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/871056/publications.pdf

Version: 2024-02-01

567144 501076 2,186 29 15 28 h-index citations g-index papers 32 32 32 1975 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metabolic and immune-sensitive contacts between lipid droplets and endoplasmic reticulum reconstituted inÂvitro. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
2	On and off controls within dynein–dynactin on native cargoes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
3	Mapping Sphingolipid Metabolism Pathways during Phagosomal Maturation. ACS Chemical Biology, 2021, , .	1.6	7
4	From physics to physiology at the membrane–motor interface. Nature Reviews Molecular Cell Biology, 2020, 21, 61-62.	16.1	1
5	Lis1 co″ocalizes with actin in the phagocytic cup and regulates phagocytosis. Cytoskeleton, 2020, 77, 249-260.	1.0	4
6	Insulin activates intracellular transport of lipid droplets to release triglycerides from the liver. Journal of Cell Biology, 2019, 218, 3697-3713.	2.3	28
7	Fluorescence microscopy applied to intracellular transport by microtubule motors. Journal of Biosciences, 2018, 43, 437-445.	0.5	2
8	Lipidomics Suggests a New Role for Ceramide Synthase in Phagocytosis. ACS Chemical Biology, 2018, 13, 2280-2287.	1.6	41
9	Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes. Current Biology, 2018, 28, 1460-1466.e4.	1.8	19
10	Fluorescence microscopy applied to intracellular transport by microtubule motors. Journal of Biosciences, 2018, 43, 437-445.	0.5	0
11	Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12958-12963.	3.3	41
12	Lipid - Motor Interactions: Soap Opera or Symphony?. Current Opinion in Cell Biology, 2017, 44, 79-85.	2.6	18
13	Feeding-fasting dependent recruitment of membrane microdomain proteins to lipid droplets purified from the liver. PLoS ONE, 2017, 12, e0183022.	1.1	13
14	Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. Biochemical Journal, 2016, 473, 3031-3047.	1.7	57
15	Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes. Cell, 2016, 164, 722-734.	13.5	181
16	Isolation of Latex Bead Phagosomes from Dictyostelium for in vitro Functional Assays. Bio-protocol, $2016, 6, .$	0.2	6
17	Reconstitution of Microtubule-Dependent Organelle Transport. Methods in Enzymology, 2014, 540, 231-248.	0.4	11
18	Teamwork in microtubule motors. Trends in Cell Biology, 2013, 23, 575-582.	3.6	81

#	Article	IF	CITATIONS
19	Molecular Adaptations Allow Dynein to Generate Large Collective Forces inside Cells. Cell, 2013, 152, 172-182.	13.5	262
20	Quantitative optical trapping on single organelles in cell extract. Nature Methods, 2013, 10, 68-70.	9.0	44
21	Simple non-fluorescent polarity labeling of microtubules for molecular motor assays. BioTechniques, 2009, 46, 543-549.	0.8	12
22	Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19381-19386.	3.3	309
23	Intracellular Transport: How Do Motors Work Together?. Current Biology, 2009, 19, R416-R418.	1.8	20
24	Studying Molecular Motor-Based Cargo Transport: What Is Real and What Is Noise?. Biophysical Journal, 2007, 92, 2953-2963.	0.2	25
25	Molecular motors as cargo transporters in the cell—The good, the bad and the ugly. Physica A: Statistical Mechanics and Its Applications, 2006, 372, 65-69.	1.2	12
26	Building Complexity: An In Vitro Study of Cytoplasmic Dynein with In Vivo Implications. Current Biology, 2005, 15, 2075-2085.	1.8	186
27	Monte Carlo modeling of single-molecule cytoplasmic dynein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12059-12064.	3.3	63
28	Cytoplasmic dynein functions as a gear in response to load. Nature, 2004, 427, 649-652.	13.7	452
29	Molecular Motors: Strategies to Get Along. Current Biology, 2004, 14, R971-R982.	1.8	272