Andrew K Sewell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8710058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunology, 2022, 15, 428-442.	2.7	9
2	Unconventional modes of peptideâ \in "HLA-I presentation change the rules of TCR engagement. , 2022, 1, .		3
3	Emergence of immune escape at dominant SARS-CoV-2 killer TÂcell epitope. Cell, 2022, 185, 2936-2951.e19.	13.5	47
4	The burgeoning role of MR1-restricted T-cells in infection, cancer and autoimmune disease. Current Opinion in Immunology, 2021, 69, 10-17.	2.4	16
5	CD8 coreceptor-mediated focusing can reorder the agonist hierarchy of peptide ligands recognized via the T cell receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
6	Simultaneous Aerosol and Intramuscular Immunization with Influenza Vaccine Induces Powerful Protective Local T Cell and Systemic Antibody Immune Responses in Pigs. Journal of Immunology, 2021, 206, 652-663.	0.4	21
7	VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Research, 2020, 48, D1057-D1062.	6.5	268
8	Circulating β cell-specific CD8+ T cells restricted by high-risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes. Clinical and Experimental Immunology, 2020, 199, 263-277.	1.1	20
9	Molecular Rules Underpinning Enhanced Affinity Binding of Human T Cell Receptors Engineered for Immunotherapy. Molecular Therapy - Oncolytics, 2020, 18, 443-456.	2.0	9
10	CD4+ T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Reports, 2020, 32, 107885.	2.9	11
11	Cytomegalovirus-Mediated T Cell Receptor Repertoire Perturbation Is Present in Early Life. Frontiers in Immunology, 2020, 11, 1587.	2.2	7
12	GPU-Accelerated Discovery of Pathogen-Derived Molecular Mimics of a T-Cell Insulin Epitope. Frontiers in Immunology, 2020, 11, 296.	2.2	10
13	Synthesis and Biological Evaluation of Haptenâ€Clicked Analogues of The Antigenic Peptide Melanâ€A/MARTâ€I 26(27L)â€35. ChemMedChem, 2020, 15, 799-807.	1.6	4
14	Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS Journal, 2020, 287, 3777-3793.	2.2	6
15	Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nature Immunology, 2020, 21, 178-185.	7.0	186
16	Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Frontiers in Immunology, 2020, 11, 604913.	2.2	19
17	Metal Ion Resistance and the Role of Metallothionein in Yeast. , 2020, , 279-310.		0
18	LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody–Induced Tumor Cell Killing by Effector CD8+ T Cells. Journal of Immunology, 2019, 203, 1076-1087.	0.4	35

#	Article	IF	CITATIONS
19	Human leukocyte antigen (HLA) class II peptide flanking residues tune the immunogenicity of a human tumor-derived epitope. Journal of Biological Chemistry, 2019, 294, 20246-20258.	1.6	10
20	TCRâ€induced alteration of primary MHC peptide anchor residue. European Journal of Immunology, 2019, 49, 1052-1066.	1.6	23
21	Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Frontiers in Immunology, 2019, 10, 319.	2.2	18
22	Peptide–MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. Journal of Immunology, 2018, 200, 2263-2279.	0.4	87
23	VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Research, 2018, 46, D419-D427.	6.5	391
24	T cell receptor alpha variable 12â€2 bias in the immunodominant response to Yellow fever virus. European Journal of Immunology, 2018, 48, 258-272.	1.6	44
25	CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 2018, 131, 311-322.	0.6	159
26	Major TCR Repertoire Perturbation by Immunodominant HLA-B*44:03-Restricted CMV-Specific T Cells. Frontiers in Immunology, 2018, 9, 2539.	2.2	25
27	Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. Journal of Clinical Investigation, 2018, 128, 1569-1580.	3.9	27
28	Designer T-cells and T-cell receptors for customized cancer immunotherapies. Current Opinion in Pharmacology, 2018, 41, 96-103.	1.7	5
29	Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLoS Pathogens, 2018, 14, e1007017.	2.1	35
30	In Silico and Structural Analyses Demonstrate That Intrinsic Protein Motions Guide T Cell Receptor Complementarity Determining Region Loop Flexibility. Frontiers in Immunology, 2018, 9, 674.	2.2	26
31	Optimized Peptide–MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Frontiers in Immunology, 2018, 9, 1378.	2.2	72
32	Nonstimulatory peptide–MHC enhances human T-cell antigen-specific responses by amplifying proximal TCR signaling. Nature Communications, 2018, 9, 2716.	5.8	12
33	Autoreactive T effector memory differentiation mirrors \hat{I}^2 cell function in type 1 diabetes. Journal of Clinical Investigation, 2018, 128, 3460-3474.	3.9	57
34	Structural Mechanism Underpinning Cross-reactivity of a CD8+ T-cell Clone That Recognizes a Peptide Derived from Human Telomerase Reverse Transcriptase. Journal of Biological Chemistry, 2017, 292, 802-813.	1.6	23
35	Using X-ray Crystallography, Biophysics, and Functional Assays to Determine the Mechanisms Governing T-cell Receptor Recognition of Cancer Antigens. Journal of Visualized Experiments, 2017, , . ——————————————————————————————————	0.2	4
36	Hong Kong English, but not as we know it: Kongish and language in late modernity. International Journal of Applied Linguistics, 2017, 27, 596-607.	0.4	10

#	Article	IF	CITATIONS
37	TARGETING THE Tâ€CELL RECEPTOR Î'â€CONSTANT DOMAIN FOR IMMUNOTHERAPY OF Tâ€CELL MALIGNANCIES Hematological Oncology, 2017, 35, 252-253.	0.8	2
38	Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nature Medicine, 2017, 23, 1416-1423.	15.2	196
39	PD-1+ Polyfunctional T Cells Dominate the Periphery after Tumor-Infiltrating Lymphocyte Therapy for Cancer. Clinical Cancer Research, 2017, 23, 5779-5788.	3.2	53
40	Dual Molecular Mechanisms Govern Escape at Immunodominant HLA A2-Restricted HIV Epitope. Frontiers in Immunology, 2017, 8, 1503.	2.2	29
41	Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation. Frontiers in Immunology, 2017, 8, 1516.	2.2	67
42	Thermal Stability of Heterotrimeric pMHC Proteins as Determined by Circular Dichroism Spectroscopy. Bio-protocol, 2017, 7, .	0.2	4
43	Reversible Oligonucleotide Chain Blocking Enables Bead Capture and Amplification of T-Cell Receptor α and β Chain mRNAs. Journal of the American Chemical Society, 2016, 138, 11073-11076.	6.6	20
44	Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5454-63.	3.3	194
45	Human TRAV1-2-negative MR1-restricted T cells detect S. pyogenes and alternatives to MAIT riboflavin-based antigens. Nature Communications, 2016, 7, 12506.	5.8	108
46	Disease etiology and diagnosis by TCR repertoire analysis goes viral. European Journal of Immunology, 2016, 46, 2516-2519.	1.6	11
47	Paediatric non-progression following grandmother-to-child HIV transmission. Retrovirology, 2016, 13, 65.	0.9	8
48	Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells. Journal of Immunology, 2016, 197, 971-982.	0.4	21
49	Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nature Immunology, 2016, 17, 946-955.	7.0	130
50	Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1. Journal of Investigative Dermatology, 2016, 136, 1172-1181.	0.3	17
51	ldentification of human viral proteinâ€derived ligands recognized by individual MHClâ€restricted Tâ€cell receptors. Immunology and Cell Biology, 2016, 94, 573-582.	1.0	25
52	T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones. Journal of Immunological Methods, 2016, 430, 43-50.	0.6	28
53	A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen. Journal of Biological Chemistry, 2016, 291, 8951-8959.	1.6	29
54	Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells. Clinical and Experimental Immunology, 2016, 187, 124-137.	1.1	32

#	Article	IF	CITATIONS
55	Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. Journal of Clinical Investigation, 2016, 126, 2191-2204.	3.9	113
56	Targeting T-Cell Receptor Î ² -Constant Domain for Immunotherapy of T-Cell Malignancies. Blood, 2016, 128, 811-811.	0.6	0
57	Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers. Journal of Immunology, 2015, 195, 5827-5836.	0.4	12
58	More tricks with tetramers: a practical guide to staining T cells with peptide– <scp>MHC</scp> multimers. Immunology, 2015, 146, 11-22.	2.0	106
59	The T cell antigen receptor: the Swiss army knife of the immune system. Clinical and Experimental Immunology, 2015, 181, 1-18.	1.1	57
60	Adoptive T-Cell Therapy for Cancer in the United Kingdom: A Review of Activity for the British Society of Gene and Cell Therapy Annual Meeting 2015. Human Gene Therapy, 2015, 26, 276-285.	1.4	17
61	$\hat{I}\pm\hat{I}^2$ T cell receptors as predictors of health and disease. Cellular and Molecular Immunology, 2015, 12, 391-399.	4.8	134
62	Recurrence of Melanoma Following T Cell Treatment: Continued Antigen Expression in a Tumor That Evades T Cell Recruitment. Molecular Therapy, 2015, 23, 396-406.	3.7	22
63	Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. Journal of Biological Chemistry, 2015, 290, 18924-18933.	1.6	28
64	The promise of γδT cells and the γδT cell receptor for cancer immunotherapy. Cellular and Molecular Immunology, 2015, 12, 656-668.	4.8	102
65	A molecular switch in immunodominant HIV-1-specific CD8 T-cell epitopes shapes differential HLA-restricted escape. Retrovirology, 2015, 12, 20.	0.9	35
66	Naive CD8 ⁺ Tâ€cell precursors display structured TCR repertoires and composite antigenâ€driven selection dynamics. Immunology and Cell Biology, 2015, 93, 625-633.	1.0	48
67	T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clinical and Experimental Immunology, 2015, 180, 255-270.	1.1	130
68	Clonotypically similar hybrid αβ T cell receptors can exhibit markedly different surface expression, antigen specificity and crossâ€reactivity. Clinical and Experimental Immunology, 2015, 180, 560-570.	1.1	2
69	Reversed-polarity Treg cell TCRs provide a shock. Nature Immunology, 2015, 16, 1105-1107.	7.0	2
70	Structural basis for ineffective Tâ€cell responses to MHC anchor residueâ€improved "heteroclitic― peptides. European Journal of Immunology, 2015, 45, 584-591.	1.6	63
71	Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs. Journal of Immunology, 2015, 194, 463-474.	0.4	55
72	A distinct immunogenic region of glutamic acid decarboxylase 65 is naturally processed and presented by human islet cells to cytotoxic CD8 T cells. Clinical and Experimental Immunology, 2015, 179, 100-107.	1.1	13

#	Article	IF	CITATIONS
73	β-Cell–Specific CD8 T Cell Phenotype in Type 1 Diabetes Reflects Chronic Autoantigen Exposure. Diabetes, 2015, 64, 916-925.	0.3	95
74	A Tool to Determine Financial Impact of Adverse Events in Health Care. Journal of Patient Safety, 2014, 10, 202-210.	0.7	3
75	Comparison of peptide–major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clinical and Experimental Immunology, 2014, 177, 47-63.	1.1	81
76	The versatility of the $\hat{I} \pm \hat{I}^2$ Tâ $\in \epsilon$ ell antigen receptor. Protein Science, 2014, 23, 260-272.	3.1	20
77	T-cell Receptor (TCR)-Peptide Specificity Overrides Affinity-enhancing TCR-Major Histocompatibility Complex Interactions. Journal of Biological Chemistry, 2014, 289, 628-638.	1.6	63
78	Coreceptor Scanning by the T Cell Receptor Provides a Mechanism for T Cell Tolerance. Cell, 2014, 159, 333-345.	13.5	155
79	Molecular Basis of a Dominant T Cell Response to an HIV Reverse Transcriptase 8-mer Epitope Presented by the Protective Allele HLA-B*51:01. Journal of Immunology, 2014, 192, 3428-3434.	0.4	25
80	Peptide length determines the outcome of TCR/peptide-MHCI engagement. Blood, 2013, 121, 1112-1123.	0.6	89
81	T-cell Receptor Specificity Maintained by Altered Thermodynamics. Journal of Biological Chemistry, 2013, 288, 18766-18775.	1.6	36
82	Advances in T-Cell Epitope Engineering. Frontiers in Immunology, 2013, 4, 133.	2.2	10
83	Human β-Cell Killing by Autoreactive Preproinsulin-Specific CD8 T Cells Is Predominantly Granule-Mediated With the Potency Dependent Upon T-Cell Receptor Avidity. Diabetes, 2013, 62, 205-213.	0.3	53
84	Cellular-Level Versus Receptor-Level Response Threshold Hierarchies in T-Cell Activation. Frontiers in Immunology, 2013, 4, 250.	2.2	24
85	Monocytes and Î ³ δT cells control the acute-phase response to intravenous zoledronate: Insights from a phase IV safety trial. Journal of Bone and Mineral Research, 2013, 28, 464-471.	3.1	59
86	Adenosine and <scp>cAMP</scp> signalling skew human dendritic cell differentiation towards a tolerogenic phenotype with defective CD8 ⁺ T ell priming capacity. Immunology, 2013, 138, 402-410.	2.0	57
87	Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. International Journal of Nanomedicine, 2013, 8, 2543.	3.3	36
88	The Nucleocapsid Protein of Rift Valley Fever Virus Is a Potent Human CD8+ T Cell Antigen and Elicits Memory Responses. PLoS ONE, 2013, 8, e59210.	1.1	27
89	CD8+ T Cell Cross-Reactivity Profiles and HIV-1 Immune Escape towards an HLA-B35-Restricted Immunodominant Nef Epitope. PLoS ONE, 2013, 8, e66152.	1.1	6
90	The human immune systemversusHIV: a cat and mouse game. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s342-s342.	0.3	0

#	Article	IF	CITATIONS
91	A Single Autoimmune T Cell Receptor Recognizes More Than a Million Different Peptides. Journal of Biological Chemistry, 2012, 287, 1168-1177.	1.6	374
92	Modification of the carboxy-terminal flanking region of a universal influenza epitope alters CD4+ T-cell repertoire selection. Nature Communications, 2012, 3, 665.	5.8	36
93	Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nature Immunology, 2012, 13, 283-289.	7.0	151
94	T-cell Receptor-optimized Peptide Skewing of the T-cell Repertoire Can Enhance Antigen Targeting*. Journal of Biological Chemistry, 2012, 287, 37269-37281.	1.6	42
95	Differential Clade-Specific HLA-B*3501 Association with HIV-1 Disease Outcome Is Linked to Immunogenicity of a Single Gag Epitope. Journal of Virology, 2012, 86, 12643-12654.	1.5	49
96	Minimal conformational plasticity enables TCR cross-reactivity to different MHC class II heterodimers. Scientific Reports, 2012, 2, 629.	1.6	26
97	Tracking the repertoire of human adult and neonatal <scp>T</scp> cells during <i>ex vivo</i> amplification. British Journal of Haematology, 2012, 159, 370-373.	1.2	4
98	The molecular determinants of <scp>CD</scp> 8 coâ€receptor function. Immunology, 2012, 137, 139-148.	2.0	51
99	Why must T cells be cross-reactive?. Nature Reviews Immunology, 2012, 12, 669-677.	10.6	397
100	A structural voyage toward an understanding of the <scp>MHC</scp> â€lâ€restricted immune response: lessons learned and much to be learned. Immunological Reviews, 2012, 250, 61-81.	2.8	81
101	Monoclonal TCR-redirected tumor cell killing. Nature Medicine, 2012, 18, 980-987.	15.2	250
102	Structural and biophysical determinants of αβ T ell antigen recognition. Immunology, 2012, 135, 9-18.	2.0	130
103	TCR/pMHC Optimized Protein crystallization Screen. Journal of Immunological Methods, 2012, 382, 203-210.	0.6	29
104	Specific T-cell Activation in an Unspecific T-cell Repertoire. Science Progress, 2011, 94, 245-264.	1.0	10
105	Real time detection of peptide–MHC dissociation reveals that improvement of primary MHC-binding residues can have a minimal, or no, effect on stability. Molecular Immunology, 2011, 48, 728-732.	1.0	39
106	The multiple roles of the CD8 coreceptor in T cell biology: opportunities for the selective modulation of self-reactive cytotoxic T cells. Journal of Leukocyte Biology, 2011, 90, 1089-1099.	1.5	20
107	Anti-CD8 Antibodies Can Trigger CD8+ T Cell Effector Function in the Absence of TCR Engagement and Improve Peptide–MHCI Tetramer Staining. Journal of Immunology, 2011, 187, 654-663.	0.4	34
108	Dynamic Tuning of T Cell Receptor Specificity by Co-Receptors and Costimulation. , 2011, , 47-73.		3

#	Article	IF	CITATIONS
109	Defining the directionality and quality of influenza virus–specific CD8+ T cell cross-reactivity in individuals infected with hepatitis C virus. Journal of Clinical Investigation, 2011, 121, 1223-1223.	3.9	0
110	Generation of robust CD8 ⁺ Tâ€cell responses against subdominant epitopes in conserved regions of HIVâ€1 by repertoire mining with mimotopes. European Journal of Immunology, 2010, 40, 1950-1962.	1.6	14
111	T cell sensitivity and the outcome of viral infection. Clinical and Experimental Immunology, 2010, 159, 245-255.	1.1	26
112	MHC Class I Molecules with Superenhanced CD8 Binding Properties Bypass the Requirement for Cognate TCR Recognition and Nonspecifically Activate CTLs. Journal of Immunology, 2010, 184, 3357-3366.	0.4	26
113	CD8 Controls T Cell Cross-Reactivity. Journal of Immunology, 2010, 185, 4625-4632.	0.4	75
114	Modification of MHC Anchor Residues Generates Heteroclitic Peptides That Alter TCR Binding and T Cell Recognition. Journal of Immunology, 2010, 185, 2600-2610.	0.4	111
115	Ca2+ Release from the Endoplasmic Reticulum of NY-ESO-1–Specific T Cells Is Modulated by the Affinity of TCR and by the Use of the CD8 Coreceptor. Journal of Immunology, 2010, 184, 1829-1839.	0.4	36
116	Genetic and Structural Basis for Selection of a Ubiquitous T Cell Receptor Deployed in Epstein-Barr Virus Infection. PLoS Pathogens, 2010, 6, e1001198.	2.1	110
117	Design, synthesis and evaluation of β-lactam antigenic peptide hybrids; unusual opening of the β-lactam ring in acidic media. Organic and Biomolecular Chemistry, 2010, 8, 5345.	1.5	8
118	Germ Line-governed Recognition of a Cancer Epitope by an Immunodominant Human T-cell Receptor. Journal of Biological Chemistry, 2009, 284, 27281-27289.	1.6	151
119	Peptide-Major Histocompatibility Complex Dimensions Control Proximal Kinase-Phosphatase Balance during T Cell Activation. Journal of Biological Chemistry, 2009, 284, 26096-26105.	1.6	48
120	Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. Journal of Immunological Methods, 2009, 340, 11-24.	0.6	134
121	ELISPOT and functional T cell analyses using HLA mono-specific target cells. Journal of Immunological Methods, 2009, 350, 150-160.	0.6	2
122	T Cell Receptor Cross-reactivity Directed by Antigen-Dependent Tuning of Peptide-MHC Molecular Flexibility. Immunity, 2009, 31, 885-896.	6.6	174
123	Tricks with tetramers: how to get the most from multimeric peptide–MHC. Immunology, 2009, 126, 147-164.	2.0	162
124	Analysis of CD8+ T-Cell–Mediated Inhibition of Hepatitis C Virus Replication Using a Novel Immunological Model. Gastroenterology, 2009, 136, 1391-1401.	0.6	108
125	Are affinity-enhanced T cells the future of HIV therapy?. HIV Therapy, 2009, 3, 105-108.	0.6	1
126	CTLs are targeted to kill Î ² cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2009, 119, 2843-2843.	3.9	1

#	Article	IF	CITATIONS
127	Techniques to improve the direct ex vivo detection of low frequency antigenâ€specific CD8 ⁺ T cells with peptideâ€major histocompatibility complex class I tetramers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 1001-1009.	1.1	49
128	Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nature Medicine, 2008, 14, 1390-1395.	15.2	224
129	Detection of low avidity CD8+ T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. Journal of Immunological Methods, 2008, 338, 31-39.	0.6	32
130	T cell receptor engagement of peptide-major histocompatibility complex class I does not modify CD8 binding. Molecular Immunology, 2008, 45, 2700-2709.	1.0	40
131	Profound Inhibition of Antigen-Specific T-Cell Effector Functions by Dasatinib. Clinical Cancer Research, 2008, 14, 2484-2491.	3.2	131
132	The <i>Staphyloccous aureus</i> Eap Protein Activates Expression of Proinflammatory Cytokines. Infection and Immunity, 2008, 76, 2164-2168.	1.0	21
133	Defining the directionality and quality of influenza virus–specific CD8+ T cell cross-reactivity in individuals infected with hepatitis C virus. Journal of Clinical Investigation, 2008, 118, 1143-53.	3.9	38
134	CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2008, 118, 3390-402.	3.9	315
135	Human TCR-Binding Affinity is Governed by MHC Class Restriction. Journal of Immunology, 2007, 178, 5727-5734.	0.4	175
136	Availability of a Diversely Avid CD8+ T Cell Repertoire Specific for the Subdominant HLA-A2-Restricted HIV-1 Gag p2419–27 Epitope. Journal of Immunology, 2007, 178, 7756-7766.	0.4	25
137	Different T Cell Receptor Affinity Thresholds and CD8 Coreceptor Dependence Govern Cytotoxic T Lymphocyte Activation and Tetramer Binding Properties. Journal of Biological Chemistry, 2007, 282, 23799-23810.	1.6	198
138	The HLA A*0201–restricted hTERT540–548 peptide is not detected on tumor cells by a CTL clone or a high-affinity T-cell receptor. Molecular Cancer Therapeutics, 2007, 6, 2081-2091.	1.9	48
139	Use of Peptide-Major Histocompatibility Complex Tetramer Technology To Study Interactions between <i>Staphylococcus aureus</i> Proteins and Human Cells. Infection and Immunity, 2007, 75, 5711-5715.	1.0	10
140	Functional and biophysical characterization of an HLA-A*6801-restricted HIV-specific T cell receptor. European Journal of Immunology, 2007, 37, 479-486.	1.6	21
141	CD8 exerts differential effects on the deployment of cytotoxic T lymphocyte effector functions. European Journal of Immunology, 2007, 37, 905-913.	1.6	23
142	Potent T cell agonism mediated by a very rapid TCR/pMHC interaction. European Journal of Immunology, 2007, 37, 798-806.	1.6	30
143	Enhanced immunogenicity of CTL antigens through mutation of the CD8 binding MHC class I invariant region. European Journal of Immunology, 2007, 37, 1323-1333.	1.6	60
144	Crystallization and preliminary X-ray structural studies of a Melan-A pMHC–TCR complex. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 758-760.	0.7	3

#	Article	IF	CITATIONS
145	Coreceptor CD8-driven modulation of T cell antigen receptor specificity. Journal of Theoretical Biology, 2007, 249, 395-408.	0.8	35
146	On the path to TCR-directed therapeutics. Nature Biotechnology, 2006, 24, 615-616.	9.4	4
147	The cytotoxic T cell response to peptide analogs of the HLA-A*0201-restricted MUC1 signal sequence epitope, M1.2. Cancer Immunology, Immunotherapy, 2006, 56, 287-301.	2.0	15
148	Anti-coreceptor antibodies profoundly affect staining with peptide-MHC class I and class II tetramers. European Journal of Immunology, 2006, 36, 1847-1855.	1.6	22
149	Agr Interference between Clinical Staphylococcus aureus Strains in an Insect Model of Virulence. Journal of Bacteriology, 2006, 188, 7686-7688.	1.0	42
150	The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clinical and Experimental Immunology, 2005, 139, 101-111.	1.1	215
151	Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. Journal of Experimental Medicine, 2005, 201, 891-902.	4.2	220
152	CD8+ T Cell Epitope-Flanking Mutations Disrupt Proteasomal Processing of HIV-1 Nef. Journal of Immunology, 2005, 175, 4618-4626.	0.4	63
153	Interaction between the CD8 Coreceptor and Major Histocompatibility Complex Class I Stabilizes T Cell Receptor-Antigen Complexes at the Cell Surface*. Journal of Biological Chemistry, 2005, 280, 27491-27501.	1.6	150
154	Design of Soluble Recombinant T Cell Receptors for Antigen Targeting and T Cell Inhibition*. Journal of Biological Chemistry, 2005, 280, 1882-1892.	1.6	69
155	T-Cell Responses Directed against Multiple HLA-A*0201-Restricted Epitopes Derived from Wilms' Tumor 1 Protein in Patients with Leukemia and Healthy Donors: Identification, Quantification, and Characterization. Clinical Cancer Research, 2005, 11, 8799-8807.	3.2	105
156	Ultrasensitive Detection and Phenotyping of CD4+ T Cells with Optimized HLA Class II Tetramer Staining. Journal of Immunology, 2005, 175, 6334-6343.	0.4	85
157	Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. Journal of Experimental Medicine, 2005, 202, 1349-1361.	4.2	360
158	Structural and kinetic basis for heightened immunogenicity of T cell vaccines. Journal of Experimental Medicine, 2005, 201, 1243-1255.	4.2	248
159	Soluble T cell receptors: novel immunotherapies. Current Opinion in Pharmacology, 2005, 5, 438-443.	1.7	32
160	Generation of a functional, soluble tapasin protein from an alternatively spliced mRNA. Genes and Immunity, 2004, 5, 101-108.	2.2	9
161	Recognition of nonpeptide antigens by human Vgamma9Vdelta2 T cells requires contact with cells of human origin. Clinical and Experimental Immunology, 2004, 136, 472-482.	1.1	57
162	Anti-CD8 Antibodies Can Inhibit or Enhance Peptide-MHC Class I (pMHCI) Multimer Binding: This Is Paralleled by Their Effects on CTL Activation and Occurs in the Absence of an Interaction between pMHCI and CD8 on the Cell Surface. Journal of Immunology, 2003, 171, 6650-6660.	0.4	51

#	Article	IF	CITATIONS
163	The CD8 T Cell Coreceptor Exhibits Disproportionate Biological Activity at Extremely Low Binding Affinities. Journal of Biological Chemistry, 2003, 278, 24285-24293.	1.6	84
164	High Avidity Antigen-Specific CTL Identified by CD8-Independent Tetramer Staining. Journal of Immunology, 2003, 171, 5116-5123.	0.4	85
165	Short Communication: Differential Processing of HLA A2-Restricted HIV Type 1 Cytotoxic T Lymphocyte Epitopes. Viral Immunology, 2002, 15, 193-196.	0.6	5
166	Novel CD8+ T Cell Antagonists Based on β2-Microglobulin. Journal of Biological Chemistry, 2002, 277, 20840-20846.	1.6	14
167	Breaking the kinetic window of T-cell activation. Trends in Immunology, 2002, 23, 67.	2.9	0
168	Solving the mystery: CD8Î ² delivers the TCR to lipid rafts. Trends in Immunology, 2002, 23, 124.	2.9	1
169	Quantitative clonotypic analysis of antigen-specific T-cell responses. Trends in Immunology, 2002, 23, 336-337.	2.9	1
170	Dyslipidemia due to retroviral protease inhibitors. Nature Medicine, 2002, 8, 308-308.	15.2	5
171	Functional discrepancies in HIV-specific CD8+ T-lymphocyte populations are related to plasma virus load. Journal of Clinical Immunology, 2002, 22, 363-374.	2.0	32
172	Dendritic cells and transmission of HIV-1. Trends in Immunology, 2001, 22, 173-175.	2.9	37
173	An inter-species difference in the CD8 coreceptor. Trends in Immunology, 2001, 22, 595.	2.9	3
174	A Novel Approach to Antigen-Specific Deletion of CTL with Minimal Cellular Activation Using α3 Domain Mutants of MHC Class I/Peptide Complex. Immunity, 2001, 14, 591-602.	6.6	70
175	Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins. Molecular Microbiology, 2001, 39, 914-923.	1.2	35
176	The Human CD8 Coreceptor Effects Cytotoxic T Cell Activation and Antigen Sensitivity Primarily by Mediating Complete Phosphorylation of the T Cell Receptor ζ Chain. Journal of Biological Chemistry, 2001, 276, 32786-32792.	1.6	138
177	Effects of Retroviral Protease Inhibitors on Proteasome Function and Processing of HIV-Derived MHC Class I-Restricted Cytotoxic T Lymphocyte Epitopes. AIDS Research and Human Retroviruses, 2001, 17, 1063-1066.	0.5	12
178	Cross-staining of cytotoxic T lymphocyte populations with peptide-MHC class I multimers of natural HIV-1 variant antigens. Aids, 2001, 15, 121-122.	1.0	2
179	Cytotoxic T Lymphocyte Responses to Human Immunodeficiency Virus: Control and Escape. Stem Cells, 2000, 18, 230-244.	1.4	77
180	Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3382-3387.	3.3	368

#	ARTICLE	IF	CITATIONS
181	Macrophage-Tropic HIV Induces and Exploits Dendritic Cell Chemotaxis. Journal of Experimental Medicine, 2000, 192, 587-594.	4.2	66
182	Cytotoxic T lymphocytes, chemokines and antiviral immunity. Trends in Immunology, 1999, 20, 212-216.	7.5	66
183	Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. Nature Medicine, 1999, 5, 399-404.	15.2	38
184	Antigen–specific release of β-chemokines by anti-HIV-1 cytotoxic T lymphocytes. Current Biology, 1998, 8, 355-358.	1.8	83
185	HLA-A*0201 presents TAP-dependent peptide epitopes to cytotoxic T lymphocytes in the absence of tapasin. European Journal of Immunology, 1998, 28, 3214-3220.	1.6	56
186	The influence of antigenic variation on cytotoxic T lymphocyte responses in HIV-1 infection. Journal of Molecular Medicine, 1998, 76, 699-708.	1.7	37
187	Oligoclonal Expansions of CD8+ T Cells in Chronic HIV Infection Are Antigen Specific. Journal of Experimental Medicine, 1998, 188, 785-790.	4.2	153
188	Copresentation of natural HIV-1 agonist and antagonist ligands fails to induce the T cell receptor signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4527-4532.	3.3	43
189	Metal Ion Stress in Yeast. , 1998, , 279-315.		6
190	Patterns of Immunodominance in HIV-1–specific Cytotoxic T Lymphocyte Responses in Two Human Histocompatibility Leukocyte Antigens (HLA)-identical Siblings with HLA-A*0201 Are Influenced by Epitope Mutation. Journal of Experimental Medicine, 1997, 185, 1423-1433.	4.2	186
191	Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1890-1895.	3.3	635
192	Antagonism of cytotoxic T lymphocyte-mediated lysis by natural HIV-1 altered peptide ligands requires simultaneous presentation of agonist and antagonist peptides. European Journal of Immunology, 1997, 27, 2323-2329.	1.6	60
193	Analysis of copper-induced metallothionein expression using autonomously replicating plasmids inCandida glabrata. Yeast, 1995, 11, 1501-1511.	0.8	17
194	Mutated Yeast Heat Shock Transcription Factor Exhibits Elevated Basal Transcriptional Activation and Confers Metal Resistance. Journal of Biological Chemistry, 1995, 270, 25079-25086.	1.6	57
195	Bioactivity of Metallothionein-3 Correlates with Its Novel .beta. Domain Sequence Rather Than Metal Binding Properties. Biochemistry, 1995, 34, 4740-4747.	1.2	173
196	Enhanced neurotrophic activity in Alzheimer's disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Research, 1994, 649, 297-304.	1.1	182
197	Mixed Cu+ and Zn2+ Coordination in the DNA-Binding Domain of the AMT1 Transcription Factor from Candida glabrata. Biochemistry, 1994, 33, 9566-9577.	1.2	55