Suresh Sundaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8710037/publications.pdf Version: 2024-02-01

SUDESH SUNDADAM

#	Article	IF	CITATIONS
1	Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362, 665-670.	12.6	208
2	Large-Area Two-Dimensional Layered Hexagonal Boron Nitride Grown on Sapphire by Metalorganic Vapor Phase Epitaxy. Crystal Growth and Design, 2016, 16, 3409-3415.	3.0	106
3	Bandgap energy bowing parameter of strained and relaxed InGaN layers. Optical Materials Express, 2014, 4, 1030.	3.0	81
4	Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire. Journal of Crystal Growth, 2013, 370, 63-67.	1.5	75
5	Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN. Applied Physics Letters, 2016, 108, .	3.3	74
6	Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors, 2016, 16, 273.	3.8	60
7	Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications. Scientific Reports, 2017, 7, 15212.	3.3	54
8	Flexible metal-semiconductor-metal device prototype on wafer-scale thick boron nitride layers grown by MOVPE. Scientific Reports, 2017, 7, 786.	3.3	41
9	Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study. Acta Materialia, 2013, 61, 6587-6596.	7.9	38
10	Experimental Study and Device Design of NO, NO ₂ , and NH ₃ Gas Detection for a Wide Dynamic and Large Temperature Range Using Pt/AlGaN/GaN HEMT. IEEE Sensors Journal, 2016, 16, 6828-6838.	4.7	35
11	MOVPE grown periodic AlN/BAIN heterostructure with high boron content. Journal of Crystal Growth, 2015, 414, 119-122.	1.5	34
12	BAIN thin layers for deep UV applications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 745-750.	1.8	31
13	Highly sensitive detection of NO2 gas using BGaN/GaN superlattice-based double Schottky junction sensors. Applied Physics Letters, 2015, 106, .	3.3	30
14	AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm. Optical Materials Express, 2015, 5, 380.	3.0	30
15	Modeling, design, fabrication and experimentation of a GaN-based, ⁶³ Ni betavoltaic battery. Journal Physics D: Applied Physics, 2018, 51, 035101.	2.8	24
16	Improving InGaN heterojunction solar cells efficiency using a semibulk absorber. Solar Energy Materials and Solar Cells, 2017, 159, 405-411.	6.2	23
17	Heterogeneous Integration of Thin-Film InGaN-Based Solar Cells on Foreign Substrates with Enhanced Performance. ACS Photonics, 2018, 5, 3003-3008.	6.6	20
18	Exfoliation of AlN film using two-dimensional multilayer hexagonal BN for deep-ultraviolet light-emitting diodes. Applied Physics Express, 2019, 12, 015505.	2.4	20

SURESH SUNDARAM

#	Article	IF	CITATIONS
19	Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template. Journal of Applied Physics, 2014, 116, .	2.5	18
20	InGaN/InGaN multiple-quantum-well grown on InGaN/GaN semi-bulk buffer for blue to cyan emission with improved optical emission and efficiency droop. Superlattices and Microstructures, 2017, 104, 291-297.	3.1	18
21	Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer. Journal Physics D: Applied Physics, 2016, 49, 315105.	2.8	16
22	Nanoselective area growth and characterization of dislocation-free InGaN nanopyramids on AlN buffered Si(111) templates. Applied Physics Letters, 2015, 107, .	3.3	15
23	Microstructural and electrical investigation of Pd/Au ohmic contact on p-GaN. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 010603.	1.2	15
24	Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask. Applied Physics Letters, 2016, 108, .	3.3	15
25	Control of the Mechanical Adhesion of Ill–V Materials Grown on Layered h-BN. ACS Applied Materials & Interfaces, 2020, 12, 55460-55466.	8.0	14
26	Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition. ACS Nano, 2020, 14, 12962-12971.	14.6	14
27	Towards P-Type Conduction in Hexagonal Boron Nitride: Doping Study and Electrical Measurements Analysis of hBN/AlGaN Heterojunctions. Nanomaterials, 2021, 11, 211.	4.1	14
28	Largeâ€Area van der Waals Epitaxial Growth of Vertical IIIâ€Nitride Nanodevice Structures on Layered Boron Nitride. Advanced Materials Interfaces, 2019, 6, 1900207.	3.7	12
29	Effectiveness of selective area growth using van der Waals h-BN layer for crack-free transfer of large-size III-N devices onto arbitrary substrates. Scientific Reports, 2020, 10, 21709.	3.3	12
30	Single crystalline boron rich B(Al)N alloys grown by MOVPE. Applied Physics Letters, 2020, 116, .	3.3	12
31	Influence of Sapphire Substrate Orientation on the van der Waals Epitaxy of III-Nitrides on 2D Hexagonal Boron Nitride: Implication for Optoelectronic Devices. ACS Applied Nano Materials, 2022, 5, 791-800.	5.0	12
32	Wafer-scale MOVPE growth and characterization of highly ordered h-BN on patterned sapphire substrates. Journal of Crystal Growth, 2019, 509, 40-43.	1.5	11
33	Novel Scalable Transfer Approach for Discrete IIIâ€Nitride Devices Using Waferâ€5cale Patterned hâ€BN/Sapphire Substrate for Pickâ€andâ€Place Applications. Advanced Materials Technologies, 2019, 4, 1900164.	5.8	10
34	MOVPE of GaN-based mixed dimensional heterostructures on wafer-scale layered 2D hexagonal boron nitride—A key enabler of III-nitride flexible optoelectronics. APL Materials, 2021, 9, .	5.1	9
35	Role of V-pits in the performance improvement of InGaN solar cells. Applied Physics Letters, 2016, 109, .	3.3	8
36	MOVPE van der Waals epitaxial growth of AlGaN/AlGaN multiple quantum well structures with deep UV emission on large scale 2D h-BN buffered sapphire substrates. Journal of Crystal Growth, 2019, 507, 352-356.	1.5	8

#	Article	IF	CITATIONS
37	Monolithic Free-Standing Large-Area Vertical III-N Light-Emitting Diode Arrays by One-Step h-BN-Based Thermomechanical Self-Lift-Off and Transfer. ACS Applied Electronic Materials, 2021, 3, 2614-2621.	4.3	8
38	High quality thick InGaN nanostructures grown by nanoselective area growth for new generation photovoltaic devices. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 740-744.	1.8	7
39	Emission wavelength red-shift by using "semi-bulk―InGaN buffer layer in InGaN/InGaN multiple-quantum-well. Superlattices and Microstructures, 2017, 112, 279-286.	3.1	7
40	Structural and optical investigations of AlGaN MQWs grown on a relaxed AlGaN buffer on AlN templates for emission at 280nm. Journal of Crystal Growth, 2015, 432, 37-44.	1.5	6
41	Natural Boron and ¹⁰ B-Enriched Hexagonal Boron Nitride for High-Sensitivity Self-Biased Metal–Semiconductor–Metal Neutron Detectors. ACS Omega, 2022, 7, 804-809.	3.5	6
42	Single-crystal nanopyramidal BGaN by nanoselective area growth on AlN/Si(111) and GaN templates. Nanotechnology, 2016, 27, 115602.	2.6	4
43	Influence of barrier layer indium on efficiency and wavelength of InGaN multiple quantum well (MQW) with and without semi-bulk InGaN buffer for blue to green regime emission. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600868.	1.8	4
44	Dc and ac electrical response of MOCVD grown GaN in p-i-n structure, assessed through <i>I</i> – <i>V</i> and admittance measurement. Journal Physics D: Applied Physics, 2017, 50, 505109.	2.8	4
45	Mask effect in nano-selective- area-growth by MOCVD on thickness enhancement, indium incorporation, and emission of InGaN nanostructures on AlN-buffered Si(111) substrates. Optical Materials Express, 2017, 7, 376.	3.0	4
46	Novel method for reclaim/reuse of bulk GaN substrates using sacrificial ZnO release layers. , 2014, , .		1
47	Nanoselective area growth of defect-free thick indium-rich InGaN nanostructures on sacrificial ZnO templates. Nanotechnology, 2017, 28, 195304.	2.6	1
48	Lightâ€Emitting Diodes: Largeâ€Area van der Waals Epitaxial Growth of Vertical IIIâ€Nitride Nanodevice Structures on Layered Boron Nitride (Adv. Mater. Interfaces 16/2019). Advanced Materials Interfaces, 2019, 6, 1970102.	3.7	1
49	Sensors based on AlGaN/GaN HEMT for fast H2 and O2 detection and measurement at high temperature. , 2019, , .		1
50	Investigation of new approaches for InGaN growth with high indium content for CPV application. AIP Conference Proceedings, 2015, , .	0.4	0
51	Scale-up of the chemical lift-off of (In)GaN-based p-i-n junctions from sapphire substrates using sacrificial ZnO template layers. Proceedings of SPIE, 2015, , .	0.8	0
52	Investigation of p-contact performance for indium rich InGaN based light emitting diodes and solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600496.	1.8	0
53	Synthesis and characterization of InN nanocrystals on glass substrate by plasma assisted reactive evaporation. AIP Conference Proceedings, 2017, , .	0.4	0