Markus Höltje

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8709638/publications.pdf Version: 2024-02-01

MADELIS HÃOLTIE

#	Article	IF	CITATIONS
1	Nâ€methylâ€ <scp>D</scp> â€aspartate receptor antibodies in herpes simplex encephalitis. Annals of Neurology, 2012, 72, 902-911.	5.3	343
2	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	28.9	305
3	High prevalence of <scp>NMDA</scp> receptor IgA/IgM antibodies in different dementia types. Annals of Clinical and Translational Neurology, 2014, 1, 822-832.	3.7	114
4	Anti-DPPX encephalitis. Neurology, 2015, 85, 890-897.	1.1	106
5	C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. Journal of Cell Science, 2010, 123, 1652-1662.	2.0	98
6	Role of Rho GTPase in astrocyte morphology and migratory response during in vitro wound healing. Journal of Neurochemistry, 2005, 95, 1237-1248.	3.9	82
7	A 29â€∎mino acid fragment of <i>Clostridium botulinum</i> C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB Journal, 2009, 23, 1115-1126.	0.5	47
8	Release of astroglial vimentin by extracellular vesicles: Modulation of binding and internalization of C3 transferase in astrocytes and neurons. Glia, 2019, 67, 703-717.	4.9	34
9	Glutamate Uptake and Release by Astrocytes Are Enhanced by Clostridium botulinum C3 Protein. Journal of Biological Chemistry, 2008, 283, 9289-9299.	3.4	33
10	Vimentin Mediates Uptake of C3 Exoenzyme. PLoS ONE, 2014, 9, e101071.	2.5	31
11	Inhibition of Rhoâ€dependent pathways by <i>Clostridium botulinum</i> C3 protein induces a proinflammatory profile in microglia. Glia, 2008, 56, 1162-1175.	4.9	30
12	Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons. Frontiers in Cellular Neuroscience, 2012, 6, 43.	3.7	26
13	Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death and Disease, 2019, 10, 864.	6.3	24
14	Minimal essential length of <i>Clostridium botulinum</i> C3 peptides to enhance neuronal regenerative growth and connectivity in a nonâ€enzymatic mode. Journal of Neurochemistry, 2012, 120, 1084-1096.	3.9	21
15	Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e169.	6.0	19
16	Synapsin-antibodies in psychiatric and neurological disorders: Prevalence and clinical findings. Brain, Behavior, and Immunity, 2017, 66, 125-134.	4.1	15
17	Studying Axonal Outgrowth and Regeneration of the Corticospinal Tract in Organotypic Slice Cultures. Journal of Neurotrauma, 2015, 32, 1465-1477.	3.4	14
18	The intermediate filament protein vimentin is essential for axonotrophic effects of <i>Clostridium botulinum</i> C3 exoenzyme. Journal of Neurochemistry, 2016, 139, 234-244.	3.9	14

Markus Höltje

#	Article	IF	CITATIONS
19	The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg–Gly–Asp motif. Journal of Biological Chemistry, 2017, 292, 17668-17680.	3.4	10
20	Subtle Phenotype Differences in Psychiatric Patients With and Without Serum Immunoglobulin G Antibodies to Synapsin. Frontiers in Psychiatry, 2019, 10, 401.	2.6	8
21	IgA autoantibodies against native myelin basic protein in a patient with MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e569.	6.0	7
22	Clostridial C3 proteins: Recent approaches to improve neuronal growth and regeneration. Annals of Anatomy, 2011, 193, 314-320.	1.9	6
23	Epitope specificity of anti-synapsin autoantibodies: Differential targeting of synapsin I domains. PLoS ONE, 2018, 13, e0208636.	2.5	6
24	C3-induced release of neurotrophic factors from Schwann cells – potential mechanism behind its regeneration promoting activity. Neurochemistry International, 2015, 90, 232-245.	3.8	3
25	The Higher Sensitivity of GABAergic Compared to Glutamatergic Neurons to Growth-Promoting C3bot Treatment Is Mediated by Vimentin. Frontiers in Cellular Neuroscience, 2020, 14, 596072.	3.7	0
26	Enhancement of Phosphorylation and Transport Activity of the Neuronal Glutamate Transporter Excitatory Amino Acid Transporter 3 by C3bot and a 26mer C3bot Peptide. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	0