Isabel D Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8709545/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An original approach to measure ligand/receptor binding affinity in non-purified samples. Scientific Reports, 2022, 12, 5400.	1.6	3
2	The role of the lipid environment in the activity of G protein coupled receptors. Biophysical Chemistry, 2022, 285, 106794.	1,5	23
3	Plasmon Waveguide Resonance: Principles, Applications and Historical Perspectives on Instrument Development. Molecules, 2021, 26, 6442.	1.7	7
4	Structural insights into the AapA1 toxin of Helicobacter pylori. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129423.	1.1	11
5	Ionpair-ï€ interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183098.	1.4	51
6	Cholesterol impacts chemokine CCR5 receptor ligandâ€binding activity. FEBS Journal, 2020, 287, 2367-2385.	2.2	17
7	A model of puppy growth during the first three weeks. Veterinary Medicine and Science, 2020, 6, 946-957.	0.6	6
8	Bidirectional transfer of Engrailed homeoprotein across the plasma membrane requires PIP2. Journal of Cell Science, 2020, 133, .	1.2	25
9	Interaction of the Anti-Proliferative GPER Inverse Agonist ERα17p with the Breast Cancer Cell Plasma Membrane: From Biophysics to Biology. Cells, 2020, 9, 447.	1.8	8
10	Microfluidic diffusional sizing probes lipid nanodiscs formation. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183215.	1.4	11
11	ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight, 2020, 5, .	2.3	25
12	Design, synthesis, and biological evaluation of a multifunctional neuropeptide-Y conjugate for selective nuclear delivery of radiolanthanides. EJNMMI Research, 2020, 10, 16.	1.1	11
13	Direct Monitoring of GPCR Reconstitution and Ligand-Binding Activity by Plasmon Waveguide Resonance. Methods in Molecular Biology, 2020, 2168, 123-143.	0.4	0
14	Dendron-Functionalized Surface: Efficient Strategy for Enhancing the Capture of Microvesicles. IScience, 2019, 21, 110-123.	1.9	2
15	Biophysical Insight on the Membrane Insertion of an Arginine-Rich Cell-Penetrating Peptide. International Journal of Molecular Sciences, 2019, 20, 4441.	1.8	14
16	Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS Journal, 2019, 286, 3664-3683.	2.2	12
17	Improved Detection of Plasmon Waveguide Resonance Using Diverging Beam, Liquid Crystal Retarder, and Application to Lipid Orientation Determination. Sensors, 2019, 19, 1402.	2.1	16
18	Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance. Accounts of Chemical Research, 2019, 52, 1059-1067.	7.6	13

#	Article	IF	CITATIONS
19	The Contribution of Differential Scanning Calorimetry for the Study of Peptide/Lipid Interactions. Methods in Molecular Biology, 2019, 1964, 3-15.	0.4	4
20	Thickness determination in anisotropic media with plasmon waveguide resonance imaging. Optics Express, 2019, 27, 3264.	1.7	2
21	Exploiting Benzophenone Photoreactivity To Probe the Phospholipid Environment and Insertion Depth of the Cellâ€Penetrating Peptide Penetratin in Model Membranes. Angewandte Chemie - International Edition, 2017, 56, 8226-8230.	7.2	21
22	Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chemical Biology, 2017, 12, 2767-2778.	1.6	13
23	Exploiting Benzophenone Photoreactivity To Probe the Phospholipid Environment and Insertion Depth of the Cellâ€Penetrating Peptide Penetratin in Model Membranes. Angewandte Chemie, 2017, 129, 8338-8342.	1.6	1
24	The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nature Communications, 2017, 8, 1571.	5.8	51
25	Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. Journal Physics D: Applied Physics, 2016, 49, 274002.	1.3	58
26	Label-free quantification of cell-penetrating peptide translocation into liposomes. Analytical Methods, 2016, 8, 4608-4616.	1.3	4
27	Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia. Molecular Biology and Evolution, 2016, 33, 946-958.	3.5	36
28	Real time monitoring of membrane GPCR reconstitution by plasmon waveguide resonance: on the role of lipids. Scientific Reports, 2016, 6, 36181.	1.6	12
29	Interaction of Aβ _{1–42} Amyloids with Lipids Promotes "Off-Pathway―Oligomerization and Membrane Damage. Biomacromolecules, 2015, 16, 944-950.	2.6	44
30	Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1147-1156.	1.4	9
31	Plasmon waveguide resonance for sensing glycan–lectin interactions. Analytica Chimica Acta, 2015, 873, 71-79.	2.6	15
32	The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 593-602.	1.4	89
33	A Pathway Toward Tumor Cell-Selective CPPs?. Methods in Molecular Biology, 2015, 1324, 279-301.	0.4	0
34	A peptide derived from the rotavirus outer capsid protein VP7 permeabilizes artificial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2026-2035.	1.4	7
35	Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance. Chemical Communications, 2014, 50, 4168-4171.	2.2	33
36	On the importance of electrostatic interactions between cell penetrating peptides and membranes: A pathway toward tumor cell selectivity?. Biochimie, 2014, 107, 154-159.	1.3	59

#	Article	IF	CITATIONS
37	A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2087-2098.	1.4	57
38	Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 287-299.	1.4	63
39	lsoniazid interaction with phosphatidylcholine-based membranes. Journal of Molecular Structure, 2013, 1051, 237-243.	1.8	6
40	The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: Toward an understanding of its selectivity for cancer cells. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1457-1470.	1.4	56
41	Tryptophan within basic peptide sequences triggers glycosaminoglycanâ€dependent endocytosis. FASEB Journal, 2013, 27, 738-749.	0.2	105
42	Direct translocation of cell-penetrating peptides in liposomes: A combined mass spectrometry quantification and fluorescence detection study. Analytical Biochemistry, 2013, 438, 1-10.	1.1	50
43	Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 824-833.	1.4	39
44	Homeoproteins and Homeoprotein-derived Peptides: Going in and Out. Current Pharmaceutical Design, 2013, 19, 2851-2862.	0.9	23
45	Is There Anybody in There? On The Mechanisms of Wall Crossing of Cell Penetrating Peptides. Current Protein and Peptide Science, 2012, 13, 658-671.	0.7	15
46	Cellular uptake and biophysical properties of galactose and/or tryptophan containing cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 448-457.	1.4	28
47	Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1755-1763.	1.4	61
48	A yeast toxic mutant of HET-s amyloid disrupts membrane integrity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2325-2334.	1.4	11
49	Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they?. Nanomedicine, 2012, 7, 133-143.	1.7	48
50	Photocontrol of the Translocation of Molecules, Peptides, and Quantum Dots through Cell and Lipid Membranes Doped with Azobenzene Copolymers. Angewandte Chemie - International Edition, 2012, 51, 2132-2136.	7.2	36
51	Editorial (Hot Topic :Membrane-Active Peptides: Mechanisms of Action). Current Protein and Peptide Science, 2012, 13, 601-601.	0.7	1
52	Membrane-active peptides: mechanisms of action. Current Protein and Peptide Science, 2012, 13, 601.	0.7	0
53	Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 382-393.	1.4	123
54	The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2009-2018.	1.4	31

#	Article	IF	CITATIONS
55	Relationships between Membrane Binding, Affinity and Cell Internalization Efficacy of a Cell-Penetrating Peptide: Penetratin as a Case Study. PLoS ONE, 2011, 6, e24096.	1.1	87
56	Membrane Crossover by Cell-Penetrating Peptides: Kinetics and Mechanisms – From Model to Cell Membrane Perturbation by Permeant Peptides. Fundamental Biomedical Technologies, 2011, , 179-196.	0.2	1
57	NMR Structure of a Viral Peptide Inserted in Artificial Membranes. Journal of Biological Chemistry, 2010, 285, 19409-19421.	1.6	15
58	Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins. Life Sciences, 2010, 86, 569-574.	2.0	20
59	Cell biology meets biophysics to unveil the different mechanisms of penetratin internalization in cells. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2231-2239.	1.4	70
60	Comparing Lipid Photo-Cross-linking Efficacy of Penetratin Analogues Bearing Three Different Photoprobes: Dithienyl Ketone, Benzophenone, and Trifluoromethylaryldiazirine. Bioconjugate Chemistry, 2010, 21, 352-359.	1.8	13
61	Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids. PLoS ONE, 2010, 5, e15819.	1.1	36
62	Chapter 6 Plasmon Resonance Methods in Membrane Protein Biology. Methods in Enzymology, 2009, 461, 123-146.	0.4	13
63	Translocation and Endocytosis for Cell-penetrating Peptide Internalization. Journal of Biological Chemistry, 2009, 284, 33957-33965.	1.6	275
64	The interaction of cellâ€penetrating peptides with lipid model systems and subsequent lipid reorganization: thermodynamic and structural characterization. Journal of Peptide Science, 2009, 15, 200-209.	0.8	41
65	Structural Studies of HIV-1 Gag p6ct and Its Interaction with Vpr Determined by Solution Nuclear Magnetic Resonance [,] . Biochemistry, 2009, 48, 2355-2367.	1.2	22
66	Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1772-1781.	1.4	98
67	The Role of Membranes in the Organization of HIV-1 Gag p6 and Vpr: p6 Shows High Affinity for Membrane Bilayers Which Substantially Increases the Interaction between p6 and Vpr Journal of Medicinal Chemistry, 2009, 52, 7157-7162.	2.9	19
68	Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 948-959.	1.1	111
69	Functional Selectivity in Cannabinoid Signaling. Current Molecular Pharmacology, 2008, 1, 273-284.	0.7	16
70	New Paradigms and Tools in Drug Design for Pain and Addiction. , 2008, , 477-494.		0
71	Quantitative Evaluation of Human δ Opioid Receptor Desensitization Using the Operational Model of Drug Action. Molecular Pharmacology, 2007, 71, 1416-1426.	1.0	17
72	Analysis of an Intact G-Protein Coupled Receptor by MALDI-TOF Mass Spectrometry:Â Molecular Heterogeneity of the Tachykinin NK-1 Receptor. Analytical Chemistry, 2007, 79, 2189-2198.	3.2	15

#	Article	IF	CITATIONS
73	New paradigms and tools in drug design for pain and addiction. AAPS Journal, 2006, 8, E450-E460.	2.2	23
74	The Two NK-1 Binding Sites Correspond to Distinct, Independent, and Non-Interconvertible Receptor Conformational States As Confirmed by Plasmon-Waveguide Resonance Spectroscopy. Biochemistry, 2006, 45, 5309-5318.	1.2	24
75	Examination of the Role of Lipid Rafts in GPCR Signal Transduction Using Plasmon Waveguide Resonance (PWR) Spectroscopy. , 2006, , 750-753.		0
76	Understanding BBB Transport using Glycosylated Enkephalins and Endorphins. , 2006, , 332-334.		0
77	Biousian glycopeptides penetrate the blood–brain barrier. Tetrahedron: Asymmetry, 2005, 16, 65-75.	1.8	39
78	Plasmon Resonance Methods in GPCR Signaling and Other Membrane Events. Current Protein and Peptide Science, 2005, 6, 293-312.	0.7	45
79	Plasmon-waveguide Resonance Studies of Lateral Segregation of Lipids and Proteins into Microdomains (Rafts) in Solid-supported Bilayers. Journal of Biological Chemistry, 2005, 280, 11175-11184.	1.6	42
80	Rhodopsin Reconstituted into a Planar-Supported Lipid Bilayer Retains Photoactivity after Cross-Linking Polymerization of Lipid Monomers. Journal of the American Chemical Society, 2005, 127, 5320-5321.	6.6	44
81	Ligand Modulation of Lateral Segregation of a G-Protein-Coupled Receptor into Lipid Microdomains in Sphingomyelin/Phosphatidylcholine Solid-Supported Bilayers. Biochemistry, 2005, 44, 9168-9178.	1.2	58
82	Glycopeptides Related to β-Endorphin Adopt Helical Amphipathic Conformations in the Presence of Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 5435-5448.	6.6	38
83	Phosphatidylethanolamine Enhances Rhodopsin Photoactivation and Transducin Binding in a Solid Supported Lipid Bilayer as Determined Using Plasmon-Waveguide Resonance Spectroscopy. Biophysical Journal, 2005, 88, 198-210.	0.2	98
84	Different Structural States of the Proteolipid Membrane Are Produced by Ligand Binding to the Human δ-Opioid Receptor as Shown by Plasmon-Waveguide Resonance Spectroscopy. Molecular Pharmacology, 2004, 65, 1248-1257.	1.0	64
85	Selectivity, Cooperativity, and Reciprocity in the Interactions between the δ-Opioid Receptor, Its Ligands, and G-proteins. Journal of Biological Chemistry, 2004, 279, 44673-44682.	1.6	51
86	A novel 3-step enantioselective synthesis of pyrenylalanine with subsequent incorporation into opioid, CCK, and melanotropin ligands. Biochemical and Biophysical Research Communications, 2004, 318, 335-340.	1.0	14
87	Direct Observation of G-protein Binding to the Human δ-Opioid Receptor Using Plasmon-Waveguide Resonance Spectroscopy. Journal of Biological Chemistry, 2003, 278, 48890-48897.	1.6	84

88 Synthesis of Amino Acids with Novel Biophysical Properties. , 2001, , 28-29.