Peixin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8709434/publications.pdf

Version: 2024-02-01

759233 794594 23 389 12 19 citations h-index g-index papers 24 24 24 380 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Stabilization of flavin mononucleotide by capturing its "tail―with porous organic polymers for long-term photocatalytic degradation of micropollutants. Journal of Hazardous Materials, 2022, 435, 128982.	12.4	2
2	Unique "posture―of rose Bengal for fabricating personal protective equipment with enhanced daylight-induced biocidal efficiency. Materials Advances, 2021, 2, 3569-3578.	5.4	13
3	Daylight-activated fumigant detoxifying nanofibrous membrane based on thiol-ene click chemistry. Journal of Hazardous Materials, 2021, 406, 124723.	12.4	6
4	Modification of cotton fabrics with 2-diethylaminoethyl chloride for salt-free dyeing with anionic dyes. Cellulose, 2021, 28, 6699.	4.9	17
5	Research progress in chemical and biological protective materials with integrated conventional "decontamination-and-sensing―functions. Materials Science and Engineering Reports, 2021, 145, 100626.	31.8	7
6	What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers, 2021, 13, 4165.	4.5	5
7	An environmentally friendly bleaching process for cotton fabrics: mechanism and application of UV/H2O2 system. Cellulose, 2020, 27, 1071-1083.	4.9	18
8	Colorimetric sensors: taking merits of nanofibrous membrane for volatile toxicants detection with ultra-high sensitivity., 2020,, 213-241.		1
9	Fabrication of robust functional poly-cationic nanodots on surfaces of nucleophilic nanofibrous membrane. Applied Surface Science, 2020, 528, 146587.	6.1	5
10	Wearable super-adsorptive fibrous equipment <i>in situ</i> grafted with porous organic polymers for carcinogenic fumigant defense and detoxification. Journal of Materials Chemistry A, 2020, 8, 24128-24136.	10.3	9
11	Daylight-Induced Antibacterial and Antiviral Cotton Cloth for Offensive Personal Protection. ACS Applied Materials & Early; Interfaces, 2020, 12, 49442-49451.	8.0	62
12	Robust, rapid, and ultrasensitive colorimetric sensors through dye chemisorption on poly-cationic nanodots. Talanta, 2020, 219, 121149.	5. 5	4
13	Hierarchical Nucleophilic Nanofibrous Membranes for Fast, Durable, and Bareâ€Eye Visible Detoxification of Carcinogenic Alkylating Toxicants. Advanced Functional Materials, 2019, 29, 1905990.	14.9	11
14	Design and Synthesis of Core–Shell Carbon Polymer Dots with Highly Stable Fluorescence in Polymeric Materials. ACS Applied Nano Materials, 2019, 2, 6503-6512.	5.0	14
15	Colorimetric Detection of Carcinogenic Alkylating Fumigants on a Nylon 6 Nanofibrous Membrane. Part II: Self-Catalysis of 2-Diethylaminoethyl-Modified Sensor Matrix for Improvement of Sensitivity. ACS Applied Materials & Diterfaces, 2019, 11, 13632-13641.	8.0	12
16	Bio-inspired ultrasensitive colorimetric detection of methyl isothiocyanate on nylon-6 nanofibrous membrane: A comparison of biological thiol reactivities. Journal of Hazardous Materials, 2019, 362, 375-382.	12.4	7
17	Catalytic and ionic cross-linking actions of l-glutamate salt for the modification of cellulose by 1,2,3,4-butanetetracarboxylic acid. Carbohydrate Polymers, 2019, 207, 288-296.	10.2	27
18	Sensitivity-Tunable Colorimetric Detection of Chloropicrin Vapor on Nylon-6 Nanofibrous Membrane Based on a Detoxification Reaction with Biological Thiols. ACS Sensors, 2018, 3, 858-866.	7.8	16

#	Article	IF	CITATION
19	Highly sensitive colorimetric paper sensor for methyl isothiocyanate (MITC): Using its toxicological reaction. Sensors and Actuators B: Chemical, 2018, 261, 178-187.	7.8	14
20	Colorimetric Detection of Carcinogenic Alkylating Fumigants on Nylon-6 Nanofibrous Membrane. Part I: Investigation of 4-(<i>p</i> -Nitrobenzyl)pyridine as a "New―Sensing Agent with Ultrahigh Sensitivity. Analytical Chemistry, 2018, 90, 14593-14601.	6.5	13
21	Generation of hydroxyl radicals and effective whitening of cotton fabrics by H2O2 under UVB irradiation. Carbohydrate Polymers, 2017, 160, 153-162.	10.2	22
22	Whiteness improvement of citric acid crosslinked cotton fabrics: H 2 O 2 bleaching under alkaline condition. Carbohydrate Polymers, 2016, 147, 139-145.	10.2	53
23	Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification. Carbohydrate Polymers, 2015, 132, 228-236.	10.2	50