Michael Khonsari

List of Publications by Citations

Source: https://exaly.com/author-pdf/8709394/michael-khonsari-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

416
papers

9,111
48
h-index

70
g-index

435
ext. papers

10,392
ext. citations

3.1
avg, IF

L-index

#	Paper	IF	Citations
416	An Experimental Investigation of Dimple Effect on the Stribeck Curve of Journal Bearings. <i>Tribology Letters</i> , 2007 , 27, 169-176	2.8	182
415	The Stribeck Curve: Experimental Results and Theoretical Prediction. <i>Journal of Tribology</i> , 2006 , 128, 789	1.8	157
414	On the thermodynamic entropy of fatigue fracture. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2010 , 466, 423-438	2.4	153
413	Experimental investigation of tribological performance of laser textured stainless steel rings. <i>Tribology International</i> , 2011 , 44, 635-644	4.9	148
412	On the Thermodynamics of Friction and Wear Review. Entropy, 2010 , 12, 1021-1049	2.8	134
411	Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load. <i>International Journal of Fatigue</i> , 2010 , 32, 382-389	5	132
410	On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm. <i>Journal of Tribology</i> , 2009 , 131,	1.8	129
409	On the thermodynamics of degradation. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2008 , 464, 2001-2014	2.4	119
408	Validation simulations for the variational approach to fracture. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 290, 420-437	5.7	114
407	On the Performance of Finite Journal Bearings Lubricated with Micropolar Fluids. <i>Tribology Transactions</i> , 1989 , 32, 155-160	1.8	114
406	Experimental testing and thermal analysis of ball bearings. <i>Tribology International</i> , 2013 , 60, 93-103	4.9	93
405	2008,		92
404	Dissipated thermal energy and damage evolution of Glass/Epoxy using infrared thermography and acoustic emission. <i>Composites Part B: Engineering</i> , 2012 , 43, 1613-1620	10	91
403	On the effect of surface roughness in point-contact EHL: Formulas for film thickness and asperity load. <i>Tribology International</i> , 2015 , 82, 228-244	4.9	87
402	Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding. <i>Tribology International</i> , 2015 , 82, 1-11	4.9	85
401	Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects. Journal of Tribology, 2011 , 133,	1.8	81
400	Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings. <i>ASLE Transactions</i> , 1986 , 29, 141-150		81

(1991-2012)

399	Asperity micro-contact models as applied to the deformation of rough line contact. <i>Tribology International</i> , 2012 , 52, 61-74	4.9	77
398	Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness. <i>Journal of Tribology</i> , 2012 , 134,	1.8	77
397	Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow. <i>Journal of Tribology</i> , 2004 , 126, 542-546	1.8	75
396	A Review of Thermal Effects in Hydrodynamic Bearings. Part II: Journal Bearings. <i>ASLE Transactions</i> , 1987 , 30, 26-33		74
395	Thermal influence on torque transfer of wet clutches in limited slip differential applications. <i>Tribology International</i> , 2007 , 40, 876-884	4.9	73
394	On the Generalization of Thermohydrodynamic Analyses for Journal Bearings. <i>Journal of Tribology</i> , 1996 , 118, 571-579	1.8	72
393	Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces. <i>Tribology International</i> , 2014 , 70, 179-189	4.9	71
392	High-pressure rheology of lubricants and limitations of the Reynolds equation. <i>Tribology International</i> , 1998 , 31, 573-586	4.9	70
391	Life prediction of metals undergoing fatigue load based on temperature evolution. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 1555-1559	5.3	68
390	Effect of Dimple Internal Structure on Hydrodynamic Lubrication. <i>Tribology Letters</i> , 2013 , 52, 415-430	2.8	67
389	An experimental approach to low-cycle fatigue damage based on thermodynamic entropy. <i>International Journal of Solids and Structures</i> , 2010 , 47, 875-880	3.1	67
388	Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant. <i>Journal of Tribology</i> , 2008 , 130,	1.8	67
387	A Thermohydrodynamic Analysis of Foil Journal Bearings. <i>Journal of Tribology</i> , 2006 , 128, 534-541	1.8	67
386	Thermodynamic analysis of fatigue failure in a composite laminate. <i>Mechanics of Materials</i> , 2012 , 46, 113-122	3.3	66
385	Granular Lubrication: Toward an Understanding of the Transition Between Kinetic and Quasi-Fluid Regime. <i>Journal of Tribology</i> , 2004 , 126, 137-145	1.8	66
384	Thermal Characteristics of a Wet Clutch. <i>Journal of Tribology</i> , 1999 , 121, 610-617	1.8	66
383	An Experimental Approach to Evaluate the Critical Damage. <i>International Journal of Damage Mechanics</i> , 2011 , 20, 89-112	3	65
382	On The Fluid-Solid Interaction in Reference to Thermoelastohydrodynamic Analysis of Journal Bearings. <i>Journal of Tribology</i> , 1991 , 113, 398-404	1.8	64

381	An engineering approach for the prediction of wear in mixed lubricated contacts. Wear, 2013, 308, 127	1-133\$	63
380	On the optimum groove shapes for load-carrying capacity enhancement in parallel flat surface bearings: Theory and experiment. <i>Tribology International</i> , 2013 , 67, 254-262	4.9	63
379	A Modification of the Switch Function in the Elrod Cavitation Algorithm. <i>Journal of Tribology</i> , 2011 , 133,	1.8	61
378	A Review of Thermal Effects in Hydrodynamic Bearings Part I: Slider and Thrust Bearings. <i>ASLE Transactions</i> , 1987 , 30, 19-25		57
377	On the Role of Entropy Generation in Processes Involving Fatigue. <i>Entropy</i> , 2012 , 14, 24-31	2.8	55
376	Wear anisotropy of selective laser melted 316L stainless steel. <i>Wear</i> , 2019 , 428-429, 376-386	3.5	54
375	Stability Boundary of Non-Linear Orbits Within Clearance Circle of Journal Bearings. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 1993 , 115, 303-307	1.6	54
374	A thermodynamic approach to fatigue damage accumulation under variable loading. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 6133-6139	5.3	52
373	2017,		52
372	An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading. <i>Materials & Design</i> , 2014 , 57, 289-297		51
37 ²		2.4	51 51
	loading. <i>Materials & Design</i> , 2014 , 57, 289-297 On the elastohydrodynamic analysis of shear-thinning fluids. <i>Proceedings of the Royal Society A:</i>	2.4	
371	loading. <i>Materials & Design</i> , 2014 , 57, 289-297 On the elastohydrodynamic analysis of shear-thinning fluids. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2007 , 463, 3271-3290 Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings. <i>Journal of</i>	·	51
37 ¹ 37 ⁰	loading. <i>Materials & Design</i> , 2014 , 57, 289-297 On the elastohydrodynamic analysis of shear-thinning fluids. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2007 , 463, 3271-3290 Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings. <i>Journal of Tribology</i> , 2006 , 128, 594-603 An investigation into the transient behavior of journal bearing with surface texture based on	1.8	51
371 370 369	On the elastohydrodynamic analysis of shear-thinning fluids. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2007 , 463, 3271-3290 Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings. <i>Journal of Tribology</i> , 2006 , 128, 594-603 An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. <i>Tribology International</i> , 2018 , 118, 246-255 Probabilistic simulation of fatigue damage and life scatter of metallic components. <i>International</i>	1.8	51 49 48
371 370 369 368	On the elastohydrodynamic analysis of shear-thinning fluids. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,</i> 2007 , 463, 3271-3290 Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings. <i>Journal of Tribology</i> , 2006 , 128, 594-603 An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. <i>Tribology International</i> , 2018 , 118, 246-255 Probabilistic simulation of fatigue damage and life scatter of metallic components. <i>International Journal of Plasticity</i> , 2013 , 43, 101-115 Friction and wear characteristics of ceramic nanocomposite coatings: Titanium carbide/amorphous	1.8 4·9 7.6	51 49 48 47
371 370 369 368 367	On the elastohydrodynamic analysis of shear-thinning fluids. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,</i> 2007 , 463, 3271-3290 Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings. <i>Journal of Tribology,</i> 2006 , 128, 594-603 An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. <i>Tribology International,</i> 2018 , 118, 246-255 Probabilistic simulation of fatigue damage and life scatter of metallic components. <i>International Journal of Plasticity,</i> 2013 , 43, 101-115 Friction and wear characteristics of ceramic nanocomposite coatings: Titanium carbide/amorphous hydrocarbon. <i>Applied Physics Letters,</i> 2001 , 79, 329-331 On the Prediction of Running-In Behavior in Mixed-Lubrication Line Contact. <i>Journal of Tribology</i> ,	1.8 4.9 7.6	51 49 48 47 47

(2016-2013)

363	On the role of damage energy in the fatigue degradation characterization of a composite laminate. <i>Composites Part B: Engineering</i> , 2013 , 45, 528-537	10	45
362	On the degradation of superhydrophobic surfaces: A review. <i>Wear</i> , 2017 , 372-373, 145-157	3.5	44
361	Effect of Surface Pattern on Stribeck Curve. <i>Tribology Letters</i> , 2010 , 37, 477-486	2.8	44
360	Thermoelastohydrodynamic Analysis of Spur Gears with Consideration of Surface Roughness. <i>Tribology Letters</i> , 2008 , 32, 129-141	2.8	44
359	An Experimental Validation of the Recently Discovered Scale Effect in Generalized Newtonian EHL. <i>Tribology Letters</i> , 2009 , 33, 127-135	2.8	42
358	Experimental and theoretical investigation of running-in. <i>Tribology International</i> , 2011 , 44, 92-100	4.9	42
357	On the correlation between wear and entropy in dry sliding contact. Wear, 2011, 270, 781-790	3.5	41
356	The evolution of foil bearing technology. <i>Tribology International</i> , 2019 , 135, 305-323	4.9	40
355	On the anelasticity and fatigue fracture entropy in high-cycle metal fatigue. <i>Materials and Design</i> , 2015 , 82, 18-27	8.1	40
354	Rapid estimation of fatigue entropy and toughness in metals. <i>Materials & Design</i> , 2014 , 62, 149-157		40
354 353	Rapid estimation of fatigue entropy and toughness in metals. <i>Materials & Design</i> , 2014 , 62, 149-157 Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> , 2014 , 80, 222-233	4.9	40
	Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> ,	4.9	
353	Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> , 2014 , 80, 222-233 Investigation of tribological behaviors of annular rings with spiral groove. <i>Tribology International</i> ,		40
353 352	Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> , 2014 , 80, 222-233 Investigation of tribological behaviors of annular rings with spiral groove. <i>Tribology International</i> , 2011 , 44, 1610-1619 On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading	4.9	40
353 352 351	Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> , 2014 , 80, 222-233 Investigation of tribological behaviors of annular rings with spiral groove. <i>Tribology International</i> , 2011 , 44, 1610-1619 On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. <i>Tribology International</i> , 2011 , 44, 1620-1628	4.9	40 40 40
353 352 351 350	Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> , 2014 , 80, 222-233 Investigation of tribological behaviors of annular rings with spiral groove. <i>Tribology International</i> , 2011 , 44, 1610-1619 On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. <i>Tribology International</i> , 2011 , 44, 1620-1628 On the Characteristics of Misaligned Journal Bearings. <i>Lubricants</i> , 2015 , 3, 27-53 A Thermodynamic Approach for Prediction of Wear Coefficient Under Unlubricated Sliding	4.9	40 40 40 39
353 352 351 350 349	Parametric analysis for a paper-based wet clutch with groove consideration. <i>Tribology International</i> , 2014 , 80, 222-233 Investigation of tribological behaviors of annular rings with spiral groove. <i>Tribology International</i> , 2011 , 44, 1610-1619 On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. <i>Tribology International</i> , 2011 , 44, 1620-1628 On the Characteristics of Misaligned Journal Bearings. <i>Lubricants</i> , 2015 , 3, 27-53 A Thermodynamic Approach for Prediction of Wear Coefficient Under Unlubricated Sliding Condition. <i>Tribology Letters</i> , 2010 , 38, 347-354	4·9 4·9 3·1 2.8	40 40 40 39 39

345	Thermocapillary Migration of Liquid Droplets Induced by a Unidirectional Thermal Gradient. <i>Langmuir</i> , 2016 , 32, 7485-92	4	38
344	On the role of internal friction in low-and high-cycle fatigue. <i>International Journal of Fatigue</i> , 2018 , 114, 159-166	5	38
343	Application of Transient Elastohydrodynamic Lubrication Analysis for Gear Transmissions. <i>Tribology Transactions</i> , 1995 , 38, 905-913	1.8	38
342	Thermal Elastohydrodynamic Analysis Using a Generalized Non-Newtonian Formulation With Application to Bair-Winer Constitutive Equation. <i>Journal of Tribology</i> , 1994 , 116, 37-46	1.8	38
341	On the Magnitude of Cavitation Pressure of Steady-State Lubrication. <i>Tribology Letters</i> , 2013 , 51, 153-1	620 8	37
340	On the prediction of steady-state wear rate in spur gears. <i>Wear</i> , 2015 , 342-343, 234-243	3.5	36
339	The Effect of Load (Pressure) for Quantitative EHL Film Thickness. <i>Tribology Letters</i> , 2010 , 37, 613-622	2.8	36
338	The effect of laser machined pockets on the lubrication of piston ring prototypes. <i>Tribology International</i> , 2016 , 101, 273-283	4.9	36
337	On the evaluation of fracture fatigue entropy. <i>Theoretical and Applied Fracture Mechanics</i> , 2018 , 96, 35	1-3,61	36
336	On the Limiting Load-Carrying Capacity of Foil Bearings. <i>Journal of Tribology</i> , 2004 , 126, 817-818	1.8	35
335	On the Lift-off Speed in Journal Bearings. <i>Tribology Letters</i> , 2005 , 20, 299-305	2.8	35
334	A finite element analysis of the frictional forces between a cylindrical bearing element and MoS2 coated and uncoated surfaces. <i>Wear</i> , 1996 , 194, 60-70	3.5	35
333	On Thermally Induced Seizure in Journal Bearings. <i>Journal of Tribology</i> , 1989 , 111, 661-667	1.8	35
332	On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids. <i>Acta Mechanica</i> , 1990 , 81, 235-244	2.1	35
331	Texture Shape Optimization for Seal-Like Parallel Surfaces: Theory and Experiment. <i>Tribology Transactions</i> , 2016 , 59, 698-706	1.8	35
330	Entropic characterization of metal fatigue with stress concentration. <i>International Journal of Fatigue</i> , 2015 , 70, 223-234	5	34
329	Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal bearings. Part I: Analytical solutions and static performance. <i>Tribology International</i> , 2008 , 41, 119-131	4.9	34
328	Application of Hopf bifurcation theory to rotor-bearing systems with consideration of turbulent effects. <i>Tribology International</i> , 2006 , 39, 701-714	4.9	34

(2005-2000)

327	Flow Characteristics of a Powder Lubricant Sheared Between Parallel Plates. <i>Journal of Tribology</i> , 2000 , 122, 147-155	1.8	34	
326	On the thermally-induced seizure in bearings: A review. <i>Tribology International</i> , 2015 , 91, 118-130	4.9	33	
325	Damage accumulation and crack initiation detection based on the evolution of surface roughness parameters. <i>International Journal of Fatigue</i> , 2018 , 107, 130-144	5	33	
324	An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL. <i>Tribology International</i> , 2015 , 92, 184-190	4.9	32	
323	On the Correlation Between Mechanical Degradation of Lubricating Grease and Entropy. <i>Tribology Letters</i> , 2014 , 56, 197-204	2.8	32	
322	Three-Dimensional Thermohydrodynamic Analysis of a Wet Clutch With Consideration of Grooved Friction Surfaces. <i>Journal of Tribology</i> , 2011 , 133,	1.8	32	
321	Prediction of Steady State Adhesive Wear in Spur Gears Using the EHL Load Sharing Concept. Journal of Tribology, 2009 , 131,	1.8	32	
320	CFD Based Design Techniques for Thermal Prediction in a Generic Two-Axial Groove Hydrodynamic Journal Bearing. <i>Journal of Tribology</i> , 1997 , 119, 428-435	1.8	32	
319	Generalized Boundary Interactions for Powder Lubricated Couette Flows. <i>Journal of Tribology</i> , 1996 , 118, 580-588	1.8	32	
318	A thermographic method for remaining fatigue life prediction of welded joints. <i>Materials & Design</i> , 2013 , 51, 916-923		31	
317	On the modeling of multi-body interaction problems in tribology. Wear, 1997, 207, 55-62	3.5	30	
316	Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal bearings. Part II: Nonlinear instability analysis. <i>Tribology International</i> , 2008 , 41, 132-140	4.9	30	
315	A thermodynamic approach for predicting fretting fatigue life. <i>Tribology Letters</i> , 2005 , 19, 169-175	2.8	30	
314	Energy dissipation in the course of the fatigue degradation: Mathematical derivation and experimental quantification. <i>International Journal of Solids and Structures</i> , 2015 , 77, 74-85	3.1	29	
313	On the Behavior of Misaligned Journal Bearings Based on Mass-Conservative Thermohydrodynamic Analysis. <i>Journal of Tribology</i> , 2010 , 132,	1.8	29	
312	EHL Circular Contact Film Thickness Correction Factor for Shear-Thinning Fluids. <i>Journal of Tribology</i> , 2008 , 130,	1.8	28	
311	Granular Collision Lubrication: Experimental Investigation and Comparison to Theory. <i>Journal of Tribology</i> , 2007 , 129, 923-932	1.8	28	
310	On the granular lubrication theory. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2005 , 461, 3255-3278	2.4	28	

309	Adiabatic Shear Localization in a Liquid Lubricant Under Pressure. Journal of Tribology, 1994, 116, 705-7	0.8 8	28
308	A comprehensive fatigue failure criterion based on thermodynamic approach. <i>Journal of Composite Materials</i> , 2012 , 46, 437-447	2.7	27
307	Thermohydrodynamic Analysis of Spiral Groove Mechanical Face Seal for Liquid Applications. Journal of Tribology, 2012 , 134,	1.8	27
306	An Analysis of Powder Lubricated Slider Bearings. <i>Journal of Tribology</i> , 1996 , 118, 206-214	1.8	27
305	Numerical Simulations of the Flow Field Around the Rings of Mechanical Seals. <i>Journal of Tribology</i> , 2006 , 128, 559-565	1.8	27
304	On the wear prediction of the paper-based friction materialin a wet clutch. Wear, 2015, 334-335, 56-66	3.5	26
303	A variational approach to the fracture of brittle thin films subject to out-of-plane loading. <i>Journal of the Mechanics and Physics of Solids</i> , 2013 , 61, 2360-2379	5	26
302	On the dynamic performance of roller bearings operating under low rotational speeds with consideration of surface roughness. <i>Tribology International</i> , 2015 , 86, 62-71	4.9	26
301	Traction in EHL Line Contacts Using Free-Volume Pressure-Viscosity Relationship With Thermal and Shear-Thinning Effects. <i>Journal of Tribology</i> , 2009 , 131,	1.8	26
300	A generalized thermoelastic instability analysis. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2003 , 459, 309-329	2.4	26
299	Thermal and Dynamic Characterization of Wet Clutch Engagement With Provision for Drive Torque. <i>Journal of Tribology</i> , 2001 , 123, 313-323	1.8	26
298	Stability of a Rigid Rotor Supported on Flexible Oil Journal Bearings. <i>Journal of Tribology</i> , 1988 , 110, 181-187	1.8	26
297	Brittle rotational faults and the associated shear heating. Marine and Petroleum Geology, 2017, 88, 551-	5ф. /	25
296	Prediction of Wear in Reciprocating Dry Sliding via Dissipated Energy and Temperature Rise. <i>Tribology Letters</i> , 2013 , 50, 365-378	2.8	25
295	Combined Effects of Shear Thinning and Viscous Heating on EHL Characteristics of Rolling/Sliding Line Contacts. <i>Journal of Tribology</i> , 2008 , 130,	1.8	25
294	On the role of particulate contamination in scuffing failure. <i>Wear</i> , 1990 , 137, 51-62	3.5	25
293	Tribological and Sealing Performance of Laser Pocketed Piston Rings in a Diesel Engine. <i>Tribology Letters</i> , 2016 , 64, 1	2.8	25
292	Thermal performance of mechanical seals with textured side-wall. <i>Tribology International</i> , 2012 , 45, 1-7	4.9	24

291	On the fretting crack nucleation with provision for size effect. <i>Tribology International</i> , 2012 , 47, 32-43	4.9	24	
290	Thermoelastic Instability With Consideration of Surface Roughness and Hydrodynamic Lubrication. Journal of Tribology, 2000 , 122, 725-732	1.8	23	
289	On the Scuffing Failure of Hydrodynamic Bearings in the Presence of an Abrasive Contaminant. <i>Journal of Tribology</i> , 1999 , 121, 90-96	1.8	23	
288	Effect of viscous dissipation on the lubrication characteristics of micropolar fluids. <i>Acta Mechanica</i> , 1994 , 105, 57-68	2.1	23	
287	Finite element model of journal bearings undergoing rapid thermally induced seizure. <i>Tribology International</i> , 1992 , 25, 177-182	4.9	23	
286	Thermoelastic behaviour of journal bearings undergoing seizure. <i>Tribology International</i> , 1992 , 25, 183-	1.8.75	23	
285	On the entropy of fatigue crack propagation. <i>International Journal of Fatigue</i> , 2020 , 133, 105413	5	23	
284	On the thermally-induced failure of rolling element bearings. <i>Tribology International</i> , 2016 , 94, 661-674	4.9	22	
283	Inter-book normal fault-related shear heating in brittle bookshelf faults. <i>Marine and Petroleum Geology</i> , 2018 , 97, 45-48	4.7	22	
282	Heat Transfer in a Thin-Film Flow in the Presence of Squeeze and Shear Thinning: Application to Piston Rings. <i>Journal of Heat Transfer</i> , 1997 , 119, 249-257	1.8	22	
281	Effect of particle size dispersion on granular lubrication regimes. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2008 , 222, 725-739	1.4	22	
2 80	Thermally Induced Seizure in Journal Bearings During Startup and Transient Flow Disturbance. Journal of Tribology, 2003 , 125, 833-841	1.8	22	
279	Design of bearings on the basis of thermohydrodynamic analysis. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2004 , 218, 355-363	1.4	22	
278	On the integrated degradation coefficient for adhesive wear: A thermodynamic approach. <i>Wear</i> , 2018 , 408-409, 138-150	3.5	22	
277	Effect of Untampered Plasma Coating and Surface Texturing on Friction and Running-in Behavior of Piston Rings. <i>Coatings</i> , 2018 , 8, 110	2.9	21	
276	On the optimization of running-in operating conditions in applications involving EHL line contact. <i>Wear</i> , 2013 , 303, 130-137	3.5	21	
275	A study on the effect of starvation in mixed elastohydrodynamic lubrication. <i>Tribology International</i> , 2015 , 85, 26-36	4.9	21	
274	Thermohydrodynamic Design Charts for Slider Bearings. <i>Journal of Tribology</i> , 1997 , 119, 733-740	1.8	21	

273	Experimental Characterization of Sliding Friction: Crossing From Deformation to Plowing Contact. Journal of Tribology, 2000 , 122, 856-863	1.8	21
272	On Monitoring Physical and Chemical Degradation and Life Estimation Models for Lubricating Greases. <i>Lubricants</i> , 2016 , 4, 34	3.1	21
271	On the Applicability of Miner® Rule to Adhesive Wear. <i>Tribology Letters</i> , 2016 , 63, 1	2.8	20
270	Criticality of degradation in composite materials subjected to cyclic loading. <i>Composites Part B: Engineering</i> , 2014 , 61, 375-382	10	20
269	On the Contact of Curved Rough Surfaces: Contact Behavior and Predictive Formulas. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2014 , 81,	2.7	20
268	Experimental Investigation on the Stick-Slip Phenomenon in Granular Collision Lubrication. <i>Journal of Tribology</i> , 2008 , 130,	1.8	20
267	Prediction of the Stability Envelope of Rotor-Bearing System. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 2006 , 128, 197-202	1.6	20
266	On the Hysteresis Phenomenon Associated With Instability of Rotor-Bearing Systems. <i>Journal of Tribology</i> , 2006 , 128, 188-196	1.8	20
265	On the Formation of Hot Spots in Wet Clutch Systems. <i>Journal of Tribology</i> , 2002 , 124, 336-345	1.8	20
264	A Continuum Theory of a Lubrication Problem With Solid Particles. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1993 , 60, 48-58	2.7	20
263	A Theory of Hydrodynamic Lubrication Involving the Mixture of Two Fluids. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1994 , 61, 634-641	2.7	20
262	A Theory of Liquid-Solid Lubrication in Elastohydrodynamic Regime. <i>Journal of Tribology</i> , 1989 , 111, 440	0-484	20
261	Dynamics Analysis of Torsional Vibration Induced by Clutch and Gear Set in Automatic Transmission. <i>International Journal of Automotive Technology</i> , 2018 , 19, 473-488	1.6	19
260	Heat transfer correlations for laminar flows within a mechanical seal chamber. <i>Tribology International</i> , 2009 , 42, 770-778	4.9	19
259	Analysis of conjugate heat transfer and turbulent flow in mechanical seals. <i>Tribology International</i> , 2009 , 42, 762-769	4.9	19
258	An Application of Dimensional Analysis to Entropy-Wear Relationship. <i>Journal of Tribology</i> , 2012 , 134,	1.8	19
257	Frictional Analysis of MoS2 Coated Ball Bearings: A Three-Dimensional Finite Element Analysis. Journal of Tribology, 1997 , 119, 754-763	1.8	19
256	Effect of alloying elements on the lantiphase boundary energy in Ni-base superalloys. <i>Intermetallics</i> , 2020 , 117, 106670	3.5	19

(2013-2018)

255	On the application of fracture fatigue entropy to variable frequency and loading amplitude. <i>Theoretical and Applied Fracture Mechanics</i> , 2018 , 98, 30-37	3.7	19	
254	On the Modeling of Adhesive Wear with Consideration of Loading Sequence. <i>Tribology Letters</i> , 2018 , 66, 1	2.8	18	
253	Overview: Additive Manufacturing Enabled Accelerated Design of Ni-based Alloys for Improved Fatigue Life. <i>Additive Manufacturing</i> , 2019 , 29, 100779	6.1	18	
252	On the Influence of Traction Coefficient on the Cage Angular Velocity in Roller Bearings. <i>Tribology Transactions</i> , 2014 , 57, 793-805	1.8	18	
251	Surface Temperature in Oscillating Sliding Interfaces. Journal of Tribology, 2005, 127, 1-9	1.8	18	
250	Introduction to Thermodynamics of Mechanical Fatigue		18	
249	Neutron interferometry detection of early crack formation caused by bending fatigue in additively manufactured SS316 dogbones. <i>Materials and Design</i> , 2018 , 140, 420-430	8.1	18	
248	Prediction of wear in grease-lubricated oscillatory journal bearings via energy-based approach. <i>Wear</i> , 2014 , 318, 188-201	3.5	17	
247	Correction Factor Formula to Predict the Central and Minimum Film Thickness for Shear-Thinning Fluids in EHL. <i>Journal of Tribology</i> , 2008 , 130,	1.8	17	
246	Thermohydrodynamic Seizure: Experimental and Theoretical Analysis. <i>Journal of Tribology</i> , 1998 , 120, 8-15	1.8	17	
245	The Response of Balls Undergoing Oscillatory Motion: Crossing From Boundary to Mixed Lubrication Regimes. <i>Journal of Tribology</i> , 1993 , 115, 261-266	1.8	17	
244	Acoustic Entropy of the Materials in the Course of Degradation. <i>Entropy</i> , 2016 , 18, 280	2.8	17	
243	Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. <i>Journal of Materials Processing Technology</i> , 2018 , 262, 41-52	5.3	17	
242	Temperature-induced buckling of ductile metals during cyclic loading and the subsequent early fracture. <i>International Journal of Mechanical Sciences</i> , 2020 , 176, 105525	5.5	16	
241	Viscosity wedge effect of dimpled surfaces considering cavitation effect. <i>Tribology International</i> , 2018 , 122, 58-66	4.9	16	
240	On the running-in behavior of cam-follower mechanism. <i>Tribology International</i> , 2018 , 118, 301-313	4.9	16	
239	An engineering model to estimate consistency reduction of lubricating grease subjected to mechanical degradation under shear. <i>Tribology International</i> , 2016 , 103, 465-474	4.9	16	
238	Stochastic analysis of inter- and intra-laminar damage in notched PEEK laminates. <i>EXPRESS Polymer Letters</i> , 2013 , 7, 383-395	3.4	16	

237	Effect of Contamination on the Performance of Hydrodynamic Bearings. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2006 , 220, 419-428	1.4	16
236	On the Role of Enduring Contact in Powder Lubrication. <i>Journal of Tribology</i> , 2006 , 128, 168-175	1.8	16
235	Transient Temperature Involving Oscillatory Heat Source With Application in Fretting Contact. Journal of Tribology, 2007 , 129, 517-527	1.8	16
234	On the Modeling of a Thermomechanical Seizure. <i>Journal of Tribology</i> , 1995 , 117, 744-747	1.8	16
233	Analysis and life prediction of a composite laminate under cyclic loading. <i>Composites Part B: Engineering</i> , 2016 , 84, 98-108	10	15
232	On the effect of viscosity wedge in micro-textured parallel surfaces. <i>Tribology International</i> , 2017 , 107, 116-124	4.9	15
231	Nondestructive Estimation of Remaining Fatigue Life: Thermography Technique. <i>Journal of Failure Analysis and Prevention</i> , 2012 , 12, 683-688	0.9	15
230	On the Shape Optimization of Self-Adaptive Grooves. <i>Tribology Transactions</i> , 2011 , 54, 256-264	1.8	15
229	Full EHL Simulations Using the Actual Ree E yring Model for Shear-Thinning Lubricants. <i>Journal of Tribology</i> , 2009 , 131,	1.8	15
228	Effect of Starvation on Traction and Film Thickness in Thermo-EHL Line Contacts with Shear-Thinning Lubricants. <i>Tribology Letters</i> , 2008 , 32, 171-177	2.8	15
227	Computational Fluid Dynamics Analysis of Turbulent Flow Within a Mechanical Seal Chamber. Journal of Tribology, 2007 , 129, 120-128	1.8	15
226	Friction and wear of a rubber coating in fretting. <i>Wear</i> , 2005 , 258, 898-905	3.5	15
225	Scuffing Failure of Hydrodynamic Bearings Due to an Abrasive Contaminant Partially Penetrated in the Bearing Over-Layer. <i>Journal of Tribology</i> , 2001 , 123, 430-433	1.8	15
224	Thermoelastic Instability Including Surface Roughness Effects. <i>Journal of Tribology</i> , 1999 , 121, 648-654	1.8	15
223	Elastohydrodynamic Lubrication by Powder Slurries. <i>Journal of Tribology</i> , 1996 , 118, 67-73	1.8	15
222	Thermohydrodynamic Analysis of Solid-Liquid Lubricated Journal Bearings. <i>Journal of Tribology</i> , 1988 , 110, 367-374	1.8	15
221	On the Degradation of Tribo-components in Boundary and Mixed Lubrication Regimes. <i>Tribology Letters</i> , 2019 , 67, 1	2.8	15
220	On the thermoelastic instability of foil bearings. <i>Tribology International</i> , 2018 , 121, 10-20	4.9	14

219	Ringlike Migration of a Droplet Propelled by an Omnidirectional Thermal Gradient. <i>Langmuir</i> , 2018 , 34, 3806-3812	4	14
218	On the Prediction of Transient Wear. <i>Journal of Tribology</i> , 2016 , 138,	1.8	14
217	Frequency dependent deformation reversibility during cyclic loading. <i>Materials Research Letters</i> , 2018 , 6, 390-397	7.4	14
216	On the Relationship Between Wear and Thermal Response in Sliding Systems. <i>Tribology Letters</i> , 2010 , 38, 147-154	2.8	14
215	On the tribological behavior of MoS2-coated thrust ball bearings operating under oscillating motion. <i>Wear</i> , 2010 , 269, 547-556	3.5	14
214	Parameter Identification of Hysteresis Friction for Coated Ball Bearings Based on Three-Dimensional FEM Analysis. <i>Journal of Tribology</i> , 1997 , 119, 462-470	1.8	14
213	Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2006 , 220, 365-374	1.4	14
212	On the Growth Rate of Thermoelastic Instability. <i>Journal of Tribology</i> , 2004 , 126, 50-55	1.8	14
211	On the active stabilization of tilting-pad journal bearings. <i>Journal of Sound and Vibration</i> , 2004 , 273, 421	1 -313 8	14
210	A simplified thermohydrodynamic stability analysis of journal bearings. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2005 , 219, 225-234	1.4	14
209	Evaluation of Ultra-Low-Speed Jitter in Rolling Balls. <i>Journal of Tribology</i> , 1992 , 114, 589-594	1.8	14
208	Generalized non-Newtonian elastohydrodynamic lubrication. <i>Tribology International</i> , 1993 , 26, 405-411	4.9	14
207	A Theory of Thermo-Elastohydrodynamic Lubrication of Liquid-Solid Lubricated Cylinders. <i>Journal of Tribology</i> , 1990 , 112, 259-265	1.8	14
206	Fatigue analysis of metals using damping parameter. <i>International Journal of Fatigue</i> , 2016 , 91, 124-135	5	14
205	Prediction of Crack Nucleation in Rough Line-Contact Fretting via Continuum Damage Mechanics Approach. <i>Tribology Letters</i> , 2014 , 53, 631-643	2.8	13
204	On the Performance of EHL Contacts with Textured Surfaces. <i>Tribology Letters</i> , 2017 , 65, 1	2.8	13
203	Experimental Investigation on the Effect of Operating Conditions on the Running-in Behavior of Lubricated Elliptical Contacts. <i>Tribology Letters</i> , 2015 , 59, 1	2.8	13
202	Low-Speed Friction Torque on Balls Undergoing Rolling Motion. <i>Tribology Transactions</i> , 1993 , 36, 290-29	9 6 .8	13

201	Experimental Measurements of the Rest-Slope and Steady Torque on Ball Bearings Experiencing Small Angular Rotations. <i>Tribology Transactions</i> , 1994 , 37, 261-268	1.8	13
200	Tribological Performance of Polyamide-Imide Seal Ring Under Seawater Lubrication. <i>Tribology Letters</i> , 2016 , 62, 1	2.8	13
199	Experimental investigation of the chemical degradation of lubricating grease from an energy point of view. <i>Tribology International</i> , 2019 , 137, 289-302	4.9	12
198	Mixed elastohydrodynamic lubrication line-contact formulas with different surface patterns. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 849-859	1.4	12
197	Transient heat conduction in rolling/sliding components by a dual reciprocity boundary element method. <i>International Journal of Heat and Mass Transfer</i> , 2009 , 52, 1600-1607	4.9	12
196	Scale Effects in Generalized Newtonian Elastohydrodynamic Films. <i>Journal of Tribology</i> , 2008 , 130,	1.8	12
195	An Experimental Investigation of Grease-Lubricated Journal Bearings. <i>Journal of Tribology</i> , 2007 , 129, 84-90	1.8	12
194	Hydrodynamics of a Soft Contact Lens During Sliding Motion. <i>Journal of Tribology</i> , 2000 , 122, 573-577	1.8	12
193	On the Main Flow Pattern in Hydrocyclones. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 1993 , 115, 21-25	2.1	12
192	On the Maximum Temperature in Double-Layered Journal Bearings. <i>Journal of Tribology</i> , 1991 , 113, 46	4 -48 9	12
191	Non-destructive testing and fatigue life prediction at different environmental temperatures. <i>Infrared Physics and Technology</i> , 2019 , 96, 291-297	2.7	12
190	On the wear of dynamically-loaded engine bearings with provision for misalignment and surface roughness. <i>Tribology International</i> , 2020 , 141, 105919	4.9	12
189	On the determination of cyclic plastic strain energy with the provision for microplasticity. <i>International Journal of Fatigue</i> , 2021 , 142, 105966	5	12
188	The Use of Entropy in Modeling the Mechanical Degradation of Grease. <i>Lubricants</i> , 2019 , 7, 82	3.1	11
187	A simple approach for predicting fatigue crack propagation rate based on thermography. <i>Theoretical and Applied Fracture Mechanics</i> , 2020 , 107, 102534	3.7	11
186	Deterministic surface tractions in rough contact under stickslip condition: Application to fretting fatigue crack initiation. <i>International Journal of Fatigue</i> , 2013 , 56, 75-85	5	11
185	Fretting behavior of a rubber coating: Effect of temperature and surface roughness variations. <i>Wear</i> , 2008 , 265, 620-625	3.5	11
184	Flow Characterization and Performance of a Powder Lubricated Slider Bearing. <i>Journal of Tribology</i> , 2003 , 125, 135-144	1.8	11

183	Application of a Thermodynamically Based Wear Estimation Methodology. <i>Journal of Tribology</i> , 2016 , 138,	1.8	11
182	On the onset of steady state during transient adhesive wear. <i>Tribology International</i> , 2019 , 130, 378-38	64.9	11
181	On the migration of a droplet on an incline. Journal of Colloid and Interface Science, 2017, 494, 8-14	9.3	10
180	On the Assessment of Mechanical Degradation of Grease Using Entropy Generation Rate. <i>Tribology Letters</i> , 2019 , 67, 1	2.8	10
179	Improvement of Tribological and Biocompatibility Properties of Orthopedic Materials Using Piezoelectric Direct Discharge Plasma Surface Modification. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 2147-2159	5.5	10
178	On the degradation of tribo-components undergoing oscillating sliding contact. <i>Tribology International</i> , 2019 , 135, 18-28	4.9	10
177	On the Modeling of Quasi-Steady and Unsteady Dynamic Friction in Sliding Lubricated Line Contact. Journal of Tribology, 2010 , 132,	1.8	10
176	Influence of Inlet Oil Temperature on the Instability Threshold of Rotor-Bearing Systems. <i>Journal of Tribology</i> , 2006 , 128, 319-326	1.8	10
175	Fretting behavior of a rubber coating: Friction characteristics of rubber debris. Wear, 2006, 261, 1114-1	13.9	10
174	Performance and characterization of dynamically-loaded engine bearings with provision for misalignment. <i>Tribology International</i> , 2019 , 130, 387-399	4.9	10
173	Model validation and uncertainty analysis in the wear prediction of a wet clutch. <i>Wear</i> , 2016 , 364-365, 112-121	3.5	9
172	On the role of cooling on fatigue failure of a woven glass/epoxy laminate. <i>Journal of Composite Materials</i> , 2013 , 47, 1803-1815	2.7	9
171	Elastohydrodynamic Line-Contact of Compressible Shear Thinning Fluids With Consideration of the Surface Roughness. <i>Journal of Tribology</i> , 2010 , 132,	1.8	9
170	Comparison of the Low-Speed Frictional Characteristics of Silicon Nitride and Steel Balls Using Conventional Lubricants. <i>Journal of Tribology</i> , 1996 , 118, 43-51	1.8	9
169	A new derivation for journal bearing stiffness and damping coefficients in polar coordinates. Journal of Sound and Vibration, 2006 , 290, 500-507	3.9	9
168	Generalized Reynolds equations for line contact with double-Newtonian shear-thinning. <i>Tribology Letters</i> , 2005 , 18, 513-520	2.8	9
167	Application of analysis of variance to wet clutch engagement. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2002 , 216, 117-125	1.4	9
166	Modeling Aspects of a Rate-Controlled Seizure in an Unloaded Journal Bearing. <i>Tribology Transactions</i> , 1998 , 41, 481-488	1.8	9

165	On the solution of a lubrication problem with particulate solids. <i>International Journal of Engineering Science</i> , 1991 , 29, 1019-1033	5.7	9
164	Thermographic evaluation of metal crack propagation during cyclic loading. <i>Theoretical and Applied Fracture Mechanics</i> , 2020 , 105, 102385	3.7	9
163	Mechanical degradation of lubricating grease in an EHL line contact. <i>Tribology International</i> , 2017 , 109, 541-551	4.9	8
162	Statistical Analysis of Surface Texture Performance With Provisions With Uncertainty in Texture Dimensions. <i>IEEE Access</i> , 2017 , 5, 5388-5398	3.5	8
161	Critical operating stress of persistent slip bands in Cu. Computational Materials Science, 2019, 165, 114-7	1 <u>3.0</u>	8
160	Application of thermodynamic principles in determining the degradation of tribo-components subjected to oscillating motion in boundary and mixed lubrication regimes. <i>Wear</i> , 2019 , 436-437, 20300	2 ^{3.5}	8
159	Condition Monitoring of Molybdenum Disulphide Coated Thrust Ball Bearings Using Time-Frequency Signal Analysis. <i>Journal of Tribology</i> , 2010 , 132,	1.8	8
158	On Self-Adaptive Surface Grooves. <i>Tribology Transactions</i> , 2010 , 53, 871-880	1.8	8
157	Dynamic Friction Measurements of MoS2 Coated Ball Bearing Surfaces. <i>Journal of Tribology</i> , 1996 , 118, 858-864	1.8	8
156	Analytical Formulation for the Temperature Profile by Duhamel Theorem in Bodies Subjected to an Oscillatory Heat Source. <i>Journal of Heat Transfer</i> , 2007 , 129, 236-240	1.8	8
155	Thermoelastic Instability of Two-Conductor Friction System Including Surface Roughness. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2004 , 71, 57-68	2.7	8
154	Influence of Inlet Conditions on the Thermohydrodynamic State of a Fully Circumferentially Grooved Journal Bearing. <i>Journal of Tribology</i> , 2001 , 123, 525-532	1.8	8
153	On the Frictional Characteristics of Ball Bearings Coated With Solid Lubricants. <i>Journal of Tribology</i> , 1999 , 121, 761-767	1.8	8
152	On the Mixture Flow Problem in Lubrication of Hydrodynamic Bearings: Small Solid Volume Fraction. <i>Tribology Transactions</i> , 1992 , 35, 45-52	1.8	8
151	Characterization of multiple wear mechanisms through entropy. <i>Tribology International</i> , 2020 , 152, 106	 5 4 .89	8
150	On the effect of internal friction on torsional and axial cyclic loading. <i>International Journal of Fatigue</i> , 2021 , 145, 106113	5	8
149	On the intrinsic dissipation and fracture fatigue entropy of metals. <i>Mechanics of Materials</i> , 2021 , 155, 103734	3.3	8
148	Rapid prediction of fatigue life based on thermodynamic entropy generation. <i>International Journal of Fatigue</i> , 2021 , 145, 106105	5	8

147	On the running-in nature of metallic tribo-components: A review. Wear, 2021, 474-475, 203871	3.5	8
146	Microstructure-sensitive estimation of fatigue life using cyclic thermodynamic entropy as an index for metals. <i>Theoretical and Applied Fracture Mechanics</i> , 2021 , 112, 102854	3.7	8
145	On the useful life of tribo-pairs experiencing variable loading and sliding speed. <i>Wear</i> , 2018 , 416-417, 103-114	3.5	8
144	Mixed lubrication of soft contacts: An engineering look. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2017 , 231, 263-273	1.4	7
143	On the assessment of variable loading in adhesive wear. <i>Tribology International</i> , 2019 , 129, 167-176	4.9	7
142	Nondestructive Testing and Prediction of Remaining Fatigue Life of Metals. <i>Journal of Nondestructive Evaluation</i> , 2014 , 33, 309-316	2.1	7
141	A thermohydrodynamic analysis of a lubrication film between rough seal faces. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2009 , 223, 665-673	1.4	7
140	Performance Analysis of Grease-Lubricated Journal Bearings Including Thermal Effects. <i>Journal of Tribology</i> , 1997 , 119, 859-868	1.8	7
139	On the effect of enduring contact on the flow and thermal characteristics in powder lubrication. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2008 , 222, 741-759	1.4	7
138	Heat transfer analysis in mechanical seals using fin theory. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2007 , 221, 717-725	1.4	7
137	Analysis of Heat Partitioning in Wheel/Rail and Wheel/Brake Shoe Friction Contact: An Analytical Approach. <i>Tribology Transactions</i> , 2006 , 49, 635-642	1.8	7
136	General quantification of fatigue damage with provision for microstructure: A review. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2021 , 44, 1973-1999	3	7
135	Nondestructive estimation of remaining fatigue life without the loading history. <i>International Journal of Damage Mechanics</i> , 2020 , 29, 482-502	3	7
134	Directional interfacial motion of liquids: Fundamentals, evaluations, and manipulation strategies. <i>Tribology International</i> , 2021 , 154, 106749	4.9	7
133	Parametric analysis of wear factors of a wet clutch friction material with different groove patterns. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2017 , 231, 1056-1067	1.4	6
132	The thermocapillary migration on rough surfaces. <i>Lubrication Science</i> , 2019 , 31, 163-170	1.3	6
131	An Experimental Study of Oil-Lubricated Journal Bearings Undergoing Oscillatory Motion. <i>Journal of Tribology</i> , 2008 , 130,	1.8	6
130	An Experimental Study of Grease-Lubricated Journal Bearings Undergoing Oscillatory Motion. <i>Journal of Tribology</i> , 2007 , 129, 640-646	1.8	6

129	Hydro-Roll: A Novel Bearing Design with Superior Thermal Characteristics. <i>Tribology Transactions</i> , 1996 , 39, 455-461	1.8	6
128	A Review of Mechanical Seals Heat Transfer Augmentation Techniques. <i>Recent Patents on Mechanical Engineering</i> , 2013 , 6, 87-96	0.3	6
127	On the application of fracture fatigue entropy to multiaxial loading. <i>International Journal of Fatigue</i> , 2021 , 150, 106321	5	6
126	Experimental verification of textured mechanical seal designed using multi-objective optimization. <i>Industrial Lubrication and Tribology</i> , 2019 , 71, 766-771	1.3	5
125	Characterization of abrasive wear using degradation coefficient. Wear, 2020, 450-451, 203220	3.5	5
124	Statistical Analysis of the Influence of Imperfect Texture Shape and Dimensional Uncertainty on Surface Texture Performance. <i>IEEE Access</i> , 2017 , 5, 27023-27035	3.5	5
123	On the modeling and shape optimization of hydrodynamic flexible-pad thrust bearings. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2013 , 227, 548-558	1.4	5
122	Thermomechanical effects on transient temperature in non-conformal contacts experiencing reciprocating sliding motion. <i>International Journal of Heat and Mass Transfer</i> , 2009 , 52, 4390-4399	4.9	5
121	On the Behavior of Friction in Lubricated Point Contact With Provision for Surface Roughness. Journal of Tribology, 2010 , 132,	1.8	5
120	On the thermoelastic instability of a thin-film-lubricated sliding contact: A closed-form solution. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2003 , 217, 197-204	1.4	5
119	Adaptive control of active tilting-pad bearings		5
118	Influence of Drag Force on the Dynamic Performance of a Rotor-Bearing System. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2005 , 219, 291-295	1.4	5
117	On the thermohydrodynamic analysis of a Bingham fluid in slider bearings. <i>Acta Mechanica</i> , 2001 , 148, 165-185	2.1	5
116	Analytical solution for a mixture of a newtonian fluid and granules in hydrodynamic bearings. <i>Wear</i> , 1992 , 156, 327-344	3.5	5
115	A theoretical calculation of stacking fault energy of Ni alloys: The effects of temperature and composition. <i>Computational Materials Science</i> , 2021 , 191, 110326	3.2	5
114	On the removal of extrusions and intrusions via repolishing to improve metal fatigue life. <i>Theoretical and Applied Fracture Mechanics</i> , 2019 , 103, 102248	3.7	4
113	Improving thermal performance of mechanical seals via surface texturing. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2015 , 229, 350-361	1.4	4
112	On the Relationship Between Journal Misalignment and Web Deflection in Crankshafts. <i>Journal of Engineering for Gas Turbines and Power</i> , 2016 , 138,	1.7	4

(2021-2015)

111	Reply to Comment by Chung on On the Correlation Between Mechanical Degradation of Lubricating Grease and Entropy Tribology Letters , 2015 , 60, 1	2.8	4
110	Anharmonic variations in elastohydrodynamic film thickness resulting from harmonically varying entrainment velocity. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2010 , 224, 239-247	1.4	4
109	On the Temperature Rise of Bodies Subjected to Unidirectional or Oscillating Frictional Heating and Surface Convective Cooling. <i>Tribology Transactions</i> , 2009 , 52, 310-322	1.8	4
108	Effect of Shaft Frequency on Cavitation in a Journal Bearing for Noncentered Circular Whirl. <i>Tribology Transactions</i> , 1988 , 31, 54-60	1.8	4
107	Experimentally validated thermodynamic theory of metal fatigue. <i>Mechanics of Materials</i> , 2021 , 160, 103927	3.3	4
106	Effect of Surface Cooling on Fatigue Life Improvement. <i>Journal of Failure Analysis and Prevention</i> , 2013 , 13, 183-187	0.9	3
105	On the effects of sliding velocity and operating pressure differential in rotary O-ring seals. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 649-657	1.4	3
104	Three-Dimensional Heat Transfer Analysis of Pin-Bushing System With Oscillatory Motion: Theory and Experiment. <i>Journal of Tribology</i> , 2011 , 133,	1.8	3
103	Linear Squeeze Film with Constant Rotational Speed. <i>Tribology Transactions</i> , 2008 , 51, 361-371	1.8	3
102	On the kinetic formulation of fracture fatigue entropy of metals. Fatigue and Fracture of Engineering Materials and Structures,	3	3
102		2.8	3
	Assessment of Water Contamination on Grease Using the Contact Angle Approach. <i>Tribology</i>		
101	Assessment of Water Contamination on Grease Using the Contact Angle Approach. <i>Tribology Letters</i> , 2020 , 68, 1 On the prediction of fatigue life subjected to variable loading sequence. <i>Fatigue and Fracture of</i>	2.8	3
101	Assessment of Water Contamination on Grease Using the Contact Angle Approach. <i>Tribology Letters</i> , 2020 , 68, 1 On the prediction of fatigue life subjected to variable loading sequence. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2021 , 44, 2962 In-situ Technique for Fatigue Life Prediction of Metals Based on Temperature Evolution.	2.8	3
101	Assessment of Water Contamination on Grease Using the Contact Angle Approach. <i>Tribology Letters</i> , 2020 , 68, 1 On the prediction of fatigue life subjected to variable loading sequence. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2021 , 44, 2962 In-situ Technique for Fatigue Life Prediction of Metals Based on Temperature Evolution. <i>International Journal of Mechanical Sciences</i> , 2021 , 192, 106113	2.8 3 5·5	3 3 3
101 100 99 98	Assessment of Water Contamination on Grease Using the Contact Angle Approach. <i>Tribology Letters</i> , 2020, 68, 1 On the prediction of fatigue life subjected to variable loading sequence. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2021, 44, 2962 In-situ Technique for Fatigue Life Prediction of Metals Based on Temperature Evolution. <i>International Journal of Mechanical Sciences</i> , 2021, 192, 106113 Testing Grease Consistency. <i>Lubricants</i> , 2021, 9, 14 Evaluation of fatigue performance of additively manufactured SS316 via internal damping.	2.8 3 5·5 3.1	3 3 3
101 100 99 98 97	Assessment of Water Contamination on Grease Using the Contact Angle Approach. <i>Tribology Letters</i> , 2020 , 68, 1 On the prediction of fatigue life subjected to variable loading sequence. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2021 , 44, 2962 In-situ Technique for Fatigue Life Prediction of Metals Based on Temperature Evolution. <i>International Journal of Mechanical Sciences</i> , 2021 , 192, 106113 Testing Grease Consistency. <i>Lubricants</i> , 2021 , 9, 14 Evaluation of fatigue performance of additively manufactured SS316 via internal damping. <i>Manufacturing Letters</i> , 2018 , 18, 12-15 An approach for fatigue life prediction based on external heating. <i>International Journal of</i>	2.8 3 5.5 3.1 4.5	33333

93	Reynolds Equation and Applications143-171		3
92	On the failure mechanisms of Cr-coated 316 stainless steel in bending fatigue tests. <i>International Journal of Fatigue</i> , 2020 , 139, 105733	5	2
91	Theoretical and experimental study on interdependence of wear and wetting in metallic surfaces. <i>Tribology International</i> , 2018 , 123, 61-70	4.9	2
90	The limiting load-carrying capacity of foil thrust bearings. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2018 , 232, 1046-1052	1.4	2
89	Improving Bearings Thermal and Tribological Performance with Built-In Heat Pipe. <i>Tribology Letters</i> , 2015 , 57, 1	2.8	2
88	Thermomechanical Coupling in Oscillatory Systems With Application to Journal Bearing Seizure. <i>Journal of Tribology</i> , 2009 , 131,	1.8	2
87	Thermomechanical analysis of oscillatory pin-bushing performance. <i>Revue Europeenne Des Elements</i> , 2005 , 14, 255-269		2
86	Thermal Response of Rolling Components Under Mixed Boundary Conditions: An Analytical Approach. <i>Journal of Heat Transfer</i> , 1993 , 115, 857-865	1.8	2
85	Generalized Reynolds Equation for Solid-Liquid Lubricated Bearings. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1994 , 61, 460-466	2.7	2
84	Wetting translucency of graphene on plasmonic nanohole arrays. 2D Materials, 2020, 7, 011004	5.9	2
83	The Relation Between Subsurface Stresses and Useful Wear Life in Sliding Contacts. <i>Tribology Letters</i> , 2020 , 68, 1	2.8	2
82	An Overview of Grease Water Resistance. <i>Lubricants</i> , 2020 , 8, 86	3.1	2
81	Online monitoring of metal fatigue life. Structural Health Monitoring, 2020, 19, 938-952	4.4	2
80	Applying load-sharing method to the sliding contact in the presence of nano-lubricants. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2021 , 235, 786-797	1.4	2
79	Experimental and numerical study of the running-in wear coefficient during dry sliding contact. <i>Surface Topography: Metrology and Properties</i> , 2021 , 9, 015009	1.5	2
78	Entropic Characterization of Fatigue in Composite Materials 2021,		2
77	Experimentally verified prediction of friction coefficient and wear rate during running-in dry contact. <i>Tribology International</i> , 2022 , 170, 107508	4.9	2
76	Journal Bearings 2017 , 255-328		1

75	Thermal performance of mechanical face seal with built-in heat pipe. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2014 , 228, 498-510	1.4	1
74	On the Characterization of Thermal-Conductivity Degradation During Torsional Fatigue. <i>International Journal of Thermophysics</i> , 2011 , 32, 693-703	2.1	1
73	Online coated ball bearing health monitoring using degree of randomness and Hidden Markov Model 2009 ,		1
72	A note on the lubricating film in hydrostatic mechanical face seals. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2008 , 222, 559-567	1.4	1
71	Online tribology ball bearing fault detection and identification 2007,		1
70	On the Choking of the Flow of Piezoviscous Liquids. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 1998 , 120, 621-625	2.1	1
69	Discussion: Thermally Induced Seizures of Journal Bearings (Dufrane, K. F., and Kannel, J. W., 1989, ASME J. Tribol., 111, pp. 288 (292). <i>Journal of Tribology</i> , 1989 , 111, 292-292	1.8	1
68	Fatigue assessment of additively-manufactured C-18150 copper alloy at room and elevated temperatures via a microstructure-sensitive algorithm. <i>International Journal of Fatigue</i> , 2022 , 159, 1067	777	1
67	Application of Continuum Damage Mechanics to Predict Wear in Systems Subjected to Variable Loading. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	1
66	CFD investigation of oil-free granular lubrication. <i>Tribology International</i> , 2021 , 164, 107238	4.9	1
65	Application of thermoelectricity in fatigue of metals. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2021 , 44, 1162-1177	3	1
64	Appendix B: Viscosity Conversions555-556		1
63	On the thermohydrodynamic performance of aerated lubricants in steadily- and dynamically-loaded journal bearings. <i>Tribology International</i> , 2022 , 107606	4.9	1
62	Strain energy-based fatigue failure analyses of LB-PBF Inconel 718: effect of build orientation. <i>Additive Manufacturing</i> , 2022 , 102661	6.1	O
61	Evaluating Grease Degradation through Contact Angle Approach. <i>Lubricants</i> , 2021 , 9, 11	3.1	O
60	Investigation of metal fatigue using a coupled entropy-kinetic model. <i>International Journal of Fatigue</i> , 2022 , 106907	5	O
59	Relationship between subsurface stress and wear particle size in sliding contacts during running-in. <i>Mechanics Research Communications</i> , 2022 , 103891	2.2	О
58	Evaluation of fatigue in unidirectional and cross-ply laminated composites using a coupled entropy-kinetic concept. <i>Journal of Composite Materials</i> ,002199832210968	2.7	O

57	Tribology Friction, Wear, and Lubrication 2017 , 1-22	
56	Gas Bearings 2017 , 395-432	
55	Principles and Operating Limits 2017 , 495-528	
54	Friction and Elastohydrodynamic Lubrication 2017 , 529-569	
53	Seals Fundamentals 2017 , 571-617	
52	Condition Monitoring and Failure Analysis 2017 , 619-638	
51	Lubricants and Lubrication 2017 , 23-63	
50	Surface Texture, Interaction of Surfaces and Wear 2017 , 65-133	
49	Bearing Materials 2017 , 135-157	
48	Fundamentals of Viscous Flow 2017 , 159-188	
47	Reynolds Equation and Applications 2017 , 189-219	
46	Thrust Bearings 2017 , 221-253	
45	Squeeze-Film Bearings 2017 , 329-372	
44	On the Recovery and Fatigue Life Extension of Stainless Steel 316 Metals by Means of Recovery Heat Treatment. <i>Metals</i> , 2020 , 10, 1290	2.3
43	Theoretical and experimental analysis of relation between entropy and tensionDompression fatigue of aluminum 6061-T6. <i>Journal of the Brazilian Society of Mechanical Sciences and Engineering</i> , 2020 , 42, 1	2
42	Heat-transfer augmentation techniques to improve seal life. Sealing Technology, 2018, 2018, 5-9	0.1
41	A method for correcting a moving heat source in analyses with coarse temporal discretization. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2018 , 232, 2736-2750	1.3
40	Fundamentals of Hydrodynamic Bearings 2016 , 1-28	

39	Governing Equations for Dynamic Analysis 2016 , 29-37	
38	Conventional Methods on System Instability Analysis 2016 , 39-57	
37	Introduction to Hopf Bifurcation Theory 2016 , 59-62	
36	Application of HBT to Fluid-Film Bearings 2016 , 63-90	
35	Analysis of Thermohydrodynamic Instability 2016 , 91-167	
34	Appendix C Curve-fitting Functions for Long Journal Bearings 2016 , 175-177	
33	Appendix A Derivation of the Dynamic Pressure for Long Journal Bearing 2016 , 169-172	
32	Lubricants and Lubrication23-61	
31	Bearing Materials89-112	
30	Temperature Analysis of a Gasket for an Internal Combustion Engine. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</i> , 2006 , 220, 793-803	1.4
29	Evaluation of Critical Design Factors on the Thermal Behavior Due to Frictional Heat in the Oscillatory Sliding Conformal Contact 2006 , 105	
28	Stability Boundaries of a Conservative Gyroscopic System. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2003 , 70, 561-567	2.7
27	Discussion: Angular-Compliant Hydrodynamic Bearing Performance Under Dynamic Loads (Harnoy, A., and Rachoor, H., 1993, ASME J. Tribol., 115, pp. 342B47). <i>Journal of Tribology</i> , 1994 , 116, 661-661	1.8
26	Closure to D iscussion of Adiabatic Shear Localization in a Liquid Lubricant Under Pressure[[1994, ASME J. Tribol., 116, p. 709). <i>Journal of Tribology</i> , 1994 , 116, 709-709	1.8
25	Discussion: A Study of the Starting Characteristics of an Unlubricated Journal Bearing (Sun, D. C., and Jing Xu, 1995, ASME J. Tribol., 117, pp. 216 (23). <i>Journal of Tribology</i> , 1995 , 117, 223-223	1.8
24	Discussion: A Finite Volume Analysis of the Thermohydrodynamic Performance of Finite Journal Bearings[[Han, T., and Paranjpe, R. S., 1990, ASME J. Tribol., 112, pp. 557865). <i>Journal of Tribology</i> , 1990 , 112, 565-565	1.8
23	Some Fundamental Issues in Foil Bearings. Lecture Notes in Mechanical Engineering, 2021, 317-325	0.4
22	Appendix F Nomenclature193-196	

21	Appendix B Integrals Used in Section 1.3 2016 , 173-174	
20	Appendix E Matlab Code to Evaluate Rotor Shaft Unbalance Effects 2016 , 183-191	
19	Appendix D Jacobian Matrix of the Equations of Motion 2016 , 179-181	
18	Friction behavior of Radial Shaft Sealing Ring subjected to unsteady motion. <i>Mechanism and Machine Theory</i> , 2021 , 156, 104171	4
17	Thermodynamic Characterization of Grease Oxidation-Thermal Stability via Pressure Differential Scanning Calorimetry. <i>Tribology Transactions</i> ,1-21	1.8
16	Discussion: The Effects of Fluid Inertia Forces on the Dynamic Behavior of Short Journal Bearings in Superlaminar Flow Regime(Hashimoto, H., Wada, S., and Sumitomo, M., 1988, ASME J. Tribol., 110, pp. 539B45). <i>Journal of Tribology</i> , 1988 , 110, 546-546	1.8
15	Appendix A: Unit Conversion Factors551-553	
14	Tribology[Friction, Wear, and Lubrication1-21	
13	Hydrostatic Bearings299-319	
12	Gas Bearings321-359	
11	Dry and Starved Bearings361-387	
10	Selecting Bearing Type and Size389-423	
9	Principles and Operating Limits425-457	
8	Friction, Wear and Lubrication459-485	
7	Seal Fundamentals487-529	
6	Condition Monitoring and Failure Analysis531-550	
5	Surface Texture and Interactions63-88	
4	Fundamentals of Viscous Flow113-142	

LIST OF PUBLICATIONS

- 3 Thrust Bearings173-199
- 2 Journal Bearings201-261
- Squeeze-Film Bearings263-298