Chien-Ming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708931/publications.pdf

Version: 2024-02-01

18 papers	202 citations	1307594 7 h-index	14 g-index
18	18	18	304
all docs	docs citations	times ranked	citing author

#	Article	IF	CITATIONS
1	Extract the Degradation Information in Squeezed States with Machine Learning. Physical Review Letters, 2022, 128, 073604.	7.8	6
2	Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography. Symmetry, 2022, 14, 874.	2.2	2
3	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
4	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
5	Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing. Physical Review D, 2022, 105, .	4.7	2
6	Carrying an arbitrarily large amount of information using a single quantum particle. Physical Review A, 2020, 102, .	2.5	5
7	Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Physical Review Letters, 2020, 124, 171101.	7.8	63
8	Influence of atmospheric helium on secondary clocks. Optics Letters, 2020, 45, 4088.	3.3	6
9	Detection of $10~\mathrm{dB}$ vacuum noise squeezing at $1064~\mathrm{nm}$ by balanced homodyne detectors with a common mode rejection ratio more than $80~\mathrm{dB.}$, 2019 , , .		1
10	Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions. Physical Review A, 2017, 96, .	2.5	12
11	Quantum interference in two-photon spectroscopy for laser stabilization and cesium-cell comparison. Physical Review A, 2015, 92, .	2.5	5
12	Dual Ti:sapphire comb lasers by a fiber laser pumping scheme and a hand-sized optical frequency reference. Applied Physics B: Lasers and Optics, 2014, 117, 699-705.	2.2	4
13	Absolute frequency of cesium 6S–8S 822Ânm two-photon transition by a high-resolution scheme. Optics Letters, 2013, 38, 3186.	3.3	26
14	Compact and Dual Ti:Sapphire comb lasers pumped by single fiber laser. , 2013, , .		0
15	Absolute frequency of cesium 6S-8S hyperfine transition by two-photon interfered spectrum., 2013,,.		O
16	Absolute frequencies of $\langle \sup 133 \langle \sup \rangle Cs 6S \langle \inf \rangle 1/2 \langle \inf \rangle \& \#x2013; 8S \langle \inf \rangle 1/2 \langle \inf \rangle two-photon transition stabilized diode lasers. , 2012, , .$		0
17	High-resolution Cs133 6S–6D, 6S–8S two-photon spectroscopy using an intracavity scheme. Optics Letters, 2011, 36, 76.	3.3	14
18	Cesium 6S_1/2â†'8S_1/2 two-photon-transition-stabilized 8225 nm diode laser. Optics Letters, 2007, 32, 563.	3.3	23