
Chien-Ming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708931/publications.pdf Version: 2024-02-01

CHIEN-MING W/11

#	Article	IF	CITATIONS
1	Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors. Physical Review Letters, 2020, 124, 171101.	7.8	63
2	Absolute frequency of cesium 6S–8S 822Ânm two-photon transition by a high-resolution scheme. Optics Letters, 2013, 38, 3186.	3.3	26
3	Cesium 6S_1/2→8S_1/2 two-photon-transition-stabilized 8225 nm diode laser. Optics Letters, 2007, 32, 563.	3.3	23
4	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
5	High-resolution Cs133 6S–6D, 6S–8S two-photon spectroscopy using an intracavity scheme. Optics Letters, 2011, 36, 76.	3.3	14
6	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
7	Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions. Physical Review A, 2017, 96, .	2.5	12
8	Influence of atmospheric helium on secondary clocks. Optics Letters, 2020, 45, 4088.	3.3	6
9	Extract the Degradation Information in Squeezed States with Machine Learning. Physical Review Letters, 2022, 128, 073604.	7.8	6
10	Quantum interference in two-photon spectroscopy for laser stabilization and cesium-cell comparison. Physical Review A, 2015, 92, .	2.5	5
11	Carrying an arbitrarily large amount of information using a single quantum particle. Physical Review A, 2020, 102, .	2.5	5
12	Dual Ti:sapphire comb lasers by a fiber laser pumping scheme and a hand-sized optical frequency reference. Applied Physics B: Lasers and Optics, 2014, 117, 699-705.	2.2	4
13	Direct Parameter Estimations from Machine Learning-Enhanced Quantum State Tomography. Symmetry, 2022, 14, 874.	2.2	2
14	Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing. Physical Review D, 2022, 105, .	4.7	2
15	Detection of 10 dB vacuum noise squeezing at 1064 nm by balanced homodyne detectors with a common mode rejection ratio more than 80 dB. , 2019, , .		1
16	Absolute frequencies of ¹³³ Cs 6S <inf>1/2</inf> –8S <inf>1/2</inf> two-photon transition stabilized diode lasers. , 2012, , .		0
17	Compact and Dual Ti:Sapphire comb lasers pumped by single fiber laser. , 2013, , .		0
18	Absolute frequency of cesium 6S-8S hyperfine transition by two-photon interfered spectrum. , 2013, , .		0