Nam Mai-Duy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708881/publications.pdf Version: 2024-02-01

NAM MALDUV

#	Article	IF	CITATIONS
1	Numerical solution of differential equations using multiquadric radial basis function networks. Neural Networks, 2001, 14, 185-199.	3.3	259
2	Approximation of function and its derivatives using radial basis function networks. Applied Mathematical Modelling, 2003, 27, 197-220.	2.2	183
3	Solving high order ordinary differential equations with radial basis function networks. International Journal for Numerical Methods in Engineering, 2005, 62, 824-852.	1.5	73
4	Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. International Journal for Numerical Methods in Fluids, 2001, 37, 65-86.	0.9	71
5	Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Computers and Structures, 2011, 89, 612-625.	2.4	67
6	Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method. Computers and Structures, 2011, 89, 1-13.	2.4	65
7	Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element. Journal of Sound and Vibration, 2008, 313, 205-223.	2.1	52
8	A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems. Journal of Computational and Applied Mathematics, 2007, 201, 30-47.	1.1	50
9	Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson's equations. Engineering Analysis With Boundary Elements, 2002, 26, 133-156.	2.0	48
10	A collocation method based on oneâ€dimensional RBF interpolation scheme for solving PDEs. International Journal of Numerical Methods for Heat and Fluid Flow, 2007, 17, 165-186.	1.6	40
11	An efficient indirect RBFN-based method for numerical solution of PDEs. Numerical Methods for Partial Differential Equations, 2005, 21, 770-790.	2.0	34
12	Numerical investigations on the compressibility of a DPD fluid. Journal of Computational Physics, 2013, 242, 196-210.	1.9	32
13	An effective spectral collocation method for the direct solution of high-order ODEs. Communications in Numerical Methods in Engineering, 2005, 22, 627-642.	1.3	30
14	An integrated-RBF technique based on Galerkin formulation for elliptic differential equations. Engineering Analysis With Boundary Elements, 2009, 33, 191-199.	2.0	30
15	Understanding Viscoelasticity. Graduate Texts in Physics, 2017, , .	0.1	29
16	A compact five-point stencil based on integrated RBFs for 2D second-order differential problems. Journal of Computational Physics, 2013, 235, 302-321.	1.9	28
17	Solving biharmonic problems with scattered-point discretization using indirect radial-basis-function networks. Engineering Analysis With Boundary Elements, 2006, 30, 77-87.	2.0	26
18	A Cartesian-grid collocation method based on radial-basis-function networks for solving PDEs in irregular domains. Numerical Methods for Partial Differential Equations, 2007, 23, 1192-1210.	2.0	26

NAM MAI-DUY

#	Article	IF	CITATIONS
19	Dissipative particle dynamics modeling of low Reynolds number incompressible flows. Journal of Rheology, 2013, 57, 585-604.	1.3	25
20	Compact local integrated-RBF approximations for second-order elliptic differential problems. Journal of Computational Physics, 2011, 230, 4772-4794.	1.9	23
21	Solving high-order partial differential equations with indirect radial basis function networks. International Journal for Numerical Methods in Engineering, 2005, 63, 1636-1654.	1.5	22
22	A spectral collocation technique based on integrated Chebyshev polynomials for biharmonic problems in irregular domains. Applied Mathematical Modelling, 2009, 33, 284-299.	2.2	21
23	A spring model for suspended particles in dissipative particle dynamics. Journal of Rheology, 2014, 58, 839-867.	1.3	21
24	Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions. Computer Physics Communications, 2015, 189, 37-46.	3.0	20
25	Computing non-Newtonian fluid flow with radial basis function networks. International Journal for Numerical Methods in Fluids, 2005, 48, 1309-1336.	0.9	19
26	A multidomain integratedâ€radialâ€basisâ€function collocation method for elliptic problems. Numerical Methods for Partial Differential Equations, 2008, 24, 1301-1320.	2.0	19
27	An Effective Integrated-RBFN Cartesian-Grid Discretization for the Stream Function–Vorticity–Temperature Formulation in Nonrectangular Domains. Numerical Heat Transfer, Part B: Fundamentals, 2009, 55, 480-502.	0.6	18
28	A dissipative particle dynamics model for thixotropic materials exhibiting pseudo-yield stress behaviour. Journal of Non-Newtonian Fluid Mechanics, 2017, 241, 1-13.	1.0	15
29	An effective high order interpolation scheme in BIEM for biharmonic boundary value problems. Engineering Analysis With Boundary Elements, 2005, 29, 210-223.	2.0	12
30	A control volume scheme using compact integrated radial basis function stencils for solving the Richards equation. Journal of Hydrology, 2020, 580, 124240.	2.3	12
31	A fast convergent iterative boundary element method on PVM cluster. Engineering Analysis With Boundary Elements, 1998, 22, 307-316.	2.0	10
32	An efficient domain-decomposition pseudo-spectral method for solving elliptic differential equations. Communications in Numerical Methods in Engineering, 2007, 24, 795-806.	1.3	9
33	A Cartesian grid technique based on oneâ€dimensional integrated radial basis function networks for natural convection in concentric annuli. International Journal for Numerical Methods in Fluids, 2008, 57, 1709-1730.	0.9	9
34	A numerical scheme based on compact integrated-RBFs and Adams–Bashforth/Crank–Nicolson algorithms for diffusion and unsteady fluid flow problems. Engineering Analysis With Boundary Elements, 2013, 37, 1653-1667.	2.0	9
35	Higher-order approximation of contaminant transport equation for turbulent channel flows based on centre manifolds and its numerical solution. Journal of Hydrology, 2015, 525, 87-101.	2.3	9
36	An improved dissipative particle dynamics scheme. Applied Mathematical Modelling, 2017, 46, 602-617.	2.2	9

NAM MAI-DUY

#	Article	IF	CITATIONS
37	Imposition of physical parameters in dissipative particle dynamics. Computer Physics Communications, 2017, 221, 290-298.	3.0	9
38	A note on dissipative particle dynamics (DPD) modelling of simple fluids. Computers and Fluids, 2018, 176, 97-108.	1.3	9
39	A domain-type boundary-integral-equation method for two-dimensional biharmonic Dirichlet problem. Engineering Analysis With Boundary Elements, 2006, 30, 809-817.	2.0	8
40	Integrated radial-basis-function networks for computing Newtonian and non-Newtonian fluid flows. Computers and Structures, 2009, 87, 642-650.	2.4	8
41	A numerical study of strongly overdamped Dissipative Particle Dynamics (DPD) systems. Journal of Computational Physics, 2013, 245, 150-159.	1.9	8
42	Local moving least squareâ€oneâ€dimensional integrated radial basis function networks technique for incompressible viscous flows. International Journal for Numerical Methods in Fluids, 2012, 70, 1443-1474.	0.9	7
43	A compact 9 point stencil based on integrated RBFs for the convection–diffusion equation. Applied Mathematical Modelling, 2014, 38, 1495-1510.	2.2	7
44	A microstructure model for viscoelastic–thixotropic fluids. Physics of Fluids, 2020, 32, .	1.6	7
45	A second-order continuity domain decomposition technique based on integrated Chebyshev polynomials for two-dimensional elliptic problems. Applied Mathematical Modelling, 2008, 32, 2851-2862.	2.2	6
46	A Galerkin approach incorporating integrated radial basis function networks for the solution of 2D biharmonic equations. International Journal of Computer Mathematics, 2009, 86, 1746-1759.	1.0	6
47	Exponential-time differencing schemes for low-mass DPD systems. Computer Physics Communications, 2014, 185, 229-235.	3.0	6
48	Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems. Engineering Analysis With Boundary Elements, 2015, 59, 172-186.	2.0	6
49	A numerical study of compact approximations based on flat integrated radial basis functions for second-order differential equations. Computers and Mathematics With Applications, 2016, 72, 2364-2387.	1.4	6
50	Compact approximation stencils based on integrated flat radial basis functions. Engineering Analysis With Boundary Elements, 2017, 74, 79-87.	2.0	6
51	New approximations for one-dimensional 3-point and two-dimensional 5-point compact integrated RBF stencils. Engineering Analysis With Boundary Elements, 2021, 125, 12-22.	2.0	6
52	Numerical study of stream-function formulation governing flows in multiply-connected domains by integrated RBFs and Cartesian grids. Computers and Fluids, 2011, 44, 32-42.	1.3	5
53	A generalised finite difference scheme based on compact integrated radial basis function for flow in heterogeneous soils. International Journal for Numerical Methods in Fluids, 2017, 85, 404-429.	0.9	5
54	A symmetric integrated radial basis function method for solving differential equations. Numerical Methods for Partial Differential Equations, 2018, 34, 959-981.	2.0	5

Nam Mai-Duy

#	Article	IF	CITATIONS
55	Coarse-graining, compressibility, and thermal fluctuation scaling in dissipative particle dynamics employed with pre-determined input parameters. Physics of Fluids, 2020, 32, .	1.6	5
56	Computing high-order derivatives in compact integrated-RBF stencils. Engineering Analysis With Boundary Elements, 2022, 135, 369-381.	2.0	5
57	BEM-RBF approach for viscoelastic flow analysis. Engineering Analysis With Boundary Elements, 2002, 26, 757-762.	2.0	4
58	RBF interpolation of boundary values in the BEM for heat transfer problems. International Journal of Numerical Methods for Heat and Fluid Flow, 2003, 13, 611-632.	1.6	4
59	A numerical study of 2D integrated RBFNs incorporating Cartesian grids for solving 2D elliptic differential problems. Numerical Methods for Partial Differential Equations, 2010, 26, 1443-1462.	2.0	4
60	Modelling dispersion in laminar and turbulent flows in an open channel based on centre manifolds using 1D-IRBFN method. Applied Mathematical Modelling, 2014, 38, 3672-3691.	2.2	4
61	A time discretization scheme based on integrated radial basis functions for heat transfer and fluid flow problems. Numerical Heat Transfer, Part B: Fundamentals, 2018, 74, 498-518.	0.6	4
62	Neural networks for BEM analysis of steady viscous flows. International Journal for Numerical Methods in Fluids, 2003, 41, 743-763.	0.9	3
63	Dynamic simulation of non-spherical particulate suspensions. Rheologica Acta, 2010, 49, 597-606.	1.1	3
64	An integralâ€collocationâ€based fictitiousâ€domain technique for solving elliptic problems. Communications in Numerical Methods in Engineering, 2008, 24, 1291-1314.	1.3	2
65	A control volume technique based on integrated RBFNs for the convection-diffusion equation. Numerical Methods for Partial Differential Equations, 2009, 26, NA-NA.	2.0	2
66	A highâ€order upwind controlâ€volume method based on integrated RBFs for fluidâ€flow problems. International Journal for Numerical Methods in Fluids, 2011, 67, 1973-1992.	0.9	2
67	Simulation of viscous and viscoelastic flows using a RBF-Galerkin approach. Australian Journal of Mechanical Engineering, 2012, 9, 101-112.	1.5	2
68	ADI method based on <mml:math <br="" altimg="si77.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mm two-node integrated-RBF elements for viscous flows. Applied Mathematical Modelling, 2013, 37, 5184 5202</mm </mml:mrow></mml:mrow></mml:math>	ıl:mn>2 <td>nml:mn></td>	nml:mn>
69	High-order fluid solver based on a combined compact integrated RBF approximation and its fluid structure interaction applications. Computers and Fluids, 2016, 131, 151-168.	1.3	2
70	An effective RBFN-boundary integral approach for the analysis of natural convection flow. International Journal for Numerical Methods in Fluids, 2004, 46, 545-568.	0.9	1
71	A Cartesianâ€grid collocation technique with integrated radial basis functions for mixed boundary value problems. International Journal for Numerical Methods in Engineering, 2010, 82, 435-463.	1.5	1
72	A Cartesian-grid integrated-RBF method for viscoelastic flows. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012210.	0.3	1

NAM MAI-DUY

#	Article	IF	CITATIONS
73	A Fully Coupled Scheme for Viscous Flows in Regular and Irregular Domains Using Compact Integrated RBF Approximation. Applied Mechanics and Materials, 0, 553, 138-143.	0.2	1
74	Strongly overdamped Dissipative Particle Dynamics for fluid-solid systems. Applied Mathematical Modelling, 2016, 40, 6359-6375.	2.2	1
75	Investigation of particulate suspensions in generalised hydrodynamic dissipative particle dynamics using a spring model. Applied Mathematical Modelling, 2020, 77, 652-662.	2.2	1
76	Moving least square–one dimensional integrated radial basis function networks for time dependent problems. WIT Transactions on Modelling and Simulation, 2011, , .	0.0	1
77	A Meshless Technique Based on Integrated Radial Basis Function Networks for Elliptic Partial Differential Equations. Lecture Notes in Computational Science and Engineering, 2008, , 141-155.	0.1	0
78	Integrated-RBF network method for free vibration analysis of laminated composite plates. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012236.	0.3	0
79	A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012021.	0.3	0
80	Point-wise Integrated-RBF-based Discretisation of Differential Equations. , 2010, , .		0
81	An upwind control-volume method based on integrated RBFs for fluid-flow problems. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012023.	0.3	0
82	A stable and accurate control-volume technique based on integrated radial basis function networks for fluid-flow problems. Australian Journal of Mechanical Engineering, 2011, 8, 151-158.	1.5	0
83	On the use of integrated RBFs in Galerkin approximation for elliptic problems. WIT Transactions on Modelling and Simulation, 2008, , .	0.0	0
84	On the use of integrated radial basis function schemes in weighted residual statements for elliptic problems. , 2009, , .		0
85	IRBFN-based multiscale solution of a model 1D elliptic equation. , 2011, , .		0
86	Modeling strain localisation in a segmented bar by aC2-continuous two-node integrated-RBF element formulation. , 2012, , .		0
87	NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION USING THE INTEGRAL RADIAL BASIS FUNCTION NETWORKS. , 0, , .		0

88 10.1063/5.0033199.1., 2020,,.