Andreas Tittl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708855/publications.pdf

Version: 2024-02-01

186265 315739 4,851 50 28 38 h-index citations g-index papers 50 50 50 4731 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 2018, 360, 1105-1109.	12.6	726
2	Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nature Photonics, 2019, 13, 390-396.	31.4	546
3	A Switchable Midâ€Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability. Advanced Materials, 2015, 27, 4597-4603.	21.0	487
4	Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing. Nano Letters, 2011, 11, 4366-4369.	9.1	385
5	Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Science Advances, 2019, 5, eaaw2871.	10.3	294
6	Active Chiral Plasmonics. Nano Letters, 2015, 15, 4255-4260.	9.1	271
7	Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 2018, 9, 2160.	12.8	176
8	Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range. Nano Letters, 2015, 15, 7949-7955.	9.1	162
9	Allâ€Dielectric Programmable Huygens' Metasurfaces. Advanced Functional Materials, 2020, 30, 1910259.	14.9	149
10	Double-layer graphene for enhanced tunable infrared plasmonics. Light: Science and Applications, 2017, 6, e16277-e16277.	16.6	143
11	Allâ€Dielectric Crescent Metasurface Sensor Driven by Bound States in the Continuum. Advanced Functional Materials, 2021, 31, 2104652.	14.9	115
12	Plasmonic Smart Dust for Probing Local Chemical Reactions. Nano Letters, 2013, 13, 1816-1821.	9.1	104
13	Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects. ACS Nano, 2014, 8, 10885-10892.	14.6	103
14	Plasmonic gas and chemical sensing. Nanophotonics, 2014, 3, 157-180.	6.0	98
15	Metasurfaceâ€Based Molecular Biosensing Aided by Artificial Intelligence. Angewandte Chemie - International Edition, 2019, 58, 14810-14822.	13.8	89
16	Yttrium Hydride Nanoantennas for Active Plasmonics. Nano Letters, 2014, 14, 1140-1147.	9.1	86
17	Accessible Superchiral Near-Fields Driven by Tailored Electric and Magnetic Resonances in All-Dielectric Nanostructures. ACS Photonics, 2019, 6, 1939-1946.	6.6	82
18	DNA-assembled bimetallic plasmonic nanosensors. Light: Science and Applications, 2014, 3, e226-e226.	16.6	80

#	Article	IF	CITATIONS
19	Largeâ€Area Lowâ€Cost Tunable Plasmonic Perfect Absorber in the Near Infrared by Colloidal Etching Lithography. Advanced Optical Materials, 2015, 3, 398-403.	7.3	77
20	Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography. ACS Sensors, 2016, 1, 1148-1154.	7.8	64
21	Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Optical Materials Express, 2012, 2, 111.	3.0	61
22	Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]. Optical Materials Express, 2015, 5, 2625.	3.0	60
23	Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near- to Mid-Infrared. ACS Photonics, 2018, 5, 4903-4911.	6.6	59
24	Fabrication robustness in BIC metasurfaces. Nanophotonics, 2021, 10, 4305-4312.	6.0	57
25	Yttrium hydride nanoantennas for active plasmonics. , 2014, , .		53
26	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	47.7	52
27	Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas. ACS Photonics, 2018, 5, 4117-4124.	6.6	46
28	Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications. Optical Materials Express, 2013, 3, 194.	3.0	43
29	Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors [Invited]. Optical Materials Express, 2015, 5, 2525.	3.0	31
30	Dual Nanoresonators for Ultrasensitive Chiral Detection. ACS Photonics, 2021, 8, 1754-1762.	6.6	30
31	Anapole-Assisted Absorption Engineering in Arrays of Coupled Amorphous Gallium Phosphide Nanodisks. ACS Photonics, 2021, 8, 1469-1476.	6.6	29
32	Trends in Nanophotonicsâ€Enabled Optofluidic Biosensors. Advanced Optical Materials, 2022, 10, .	7.3	28
33	Metasurfaceâ€Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Advanced Materials, 2023, 35, .	21.0	25
34	Tunable structural colors on display. Light: Science and Applications, 2022, 11, .	16.6	9
35	Plasmonic Absorbers: A Switchable Midâ€Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability (Adv. Mater. 31/2015). Advanced Materials, 2015, 27, 4526-4526.	21.0	7
36	Tip Coupling and Array Effects of Gold Nanoantennas in Near-Field Microscopy. ACS Photonics, 2021, 8, 3486-3494.	6.6	7

#	Article	IF	Citations
37	MetaoberflÃ e henâ€basierte molekulare Biosensorik unterstþtzt von kþnstlicher Intelligenz. Angewandte Chemie, 2019, 131, 14952-14965.	2.0	4
38	Enhanced Circular Dichroism and Chiral Sensing with Bound States in the Continuum., 2019, , .		4
39	Huygens' Metasurfaces: Allâ€Dielectric Programmable Huygens' Metasurfaces (Adv. Funct. Mater.) Tj ETQq1 1 C).784314 r 14.9	rgBŢ/Overloc
40	Optical hydrogen sensing with metallic photonic crystals and plasmonic metamaterials. , 2010, , .		2
41	Plasmonic Gas and Chemical Sensing. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 239-272.	0.2	2
42	Programmable Huygens' metasurfaces for active optical phase control. , 2021, , .		1
43	All-dielectric Metasurfaces for Infrared Absorption Spectroscopy Applications. , 2019, , .		1
44	All-Dielectric High-Q Metasurfaces for Infrared Absorption Spectroscopy Applications. , 2019, , .		0
45	Fabrication tolerance impact on BIC metasurface resonances. , 2021, , .		0
46	Tailoring the Response of Gold Nanoantennas in Optical Near-Field Measurements: Orientation and Field Size. , $2021, \dots$		0
47	Bound states in the continuum in symmetry broken resonator rings. , 2021, , .		0
48	Radial bound states in the continuum. , 2021, , .		0
49	Mid-IR Nanophotonics for Surface Enhanced Spectroscopy. , 2018, , .		0
50	Duality Symmetry in Hybrid Nanoresonators for Chiral Sensing. , 2020, , .		0