
Tomo Aoyagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Frontiers in Microbiology, 2015, 6, 386.	1.5	104
2	Ultraâ€highâ€sensitivity stableâ€isotope probing of <scp>rRNA</scp> by highâ€throughput sequencing of isopycnic centrifugation gradients. Environmental Microbiology Reports, 2015, 7, 282-287.	1.0	63
3	Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME Journal, 2018, 12, 2376-2388.	4.4	42
4	Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. AMB Express, 2017, 7, 142.	1.4	41
5	High-Resolution Dynamics of Microbial Communities during Dissimilatory Selenate Reduction in Anoxic Soil. Environmental Science & Technology, 2015, 49, 7684-7691.	4.6	37
6	Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments. Frontiers in Microbiology, 2015, 6, 426.	1.5	32
7	Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment. Frontiers in Microbiology, 2017, 8, 152.	1.5	32
8	Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment. Applied Microbiology and Biotechnology, 2019, 103, 7783-7793.	1.7	29
9	A Fine-Scale Phylogenetic Analysis of Free-Living <i>Burkholderia</i> Species in Sugarcane Field Soil. Microbes and Environments, 2014, 29, 434-437.	0.7	24
10	Soil Microbial Communities Involved in Reductive Dissolution of Arsenic from Arsenate-Laden Minerals with Different Carbon Sources. Environmental Science & Technology, 2019, 53, 12398-12406.	4.6	21
11	Unexpected diversity of acetate degraders in anaerobic membrane bioreactor treating organic solid waste revealed by high-sensitivity stable isotope probing. Water Research, 2020, 176, 115750.	5.3	21
12	Design, application, and microbiome of sulfate-reducing bioreactors for treatment of mining-influenced water. Applied Microbiology and Biotechnology, 2020, 104, 6893-6903.	1.7	20
13	Biodegradation Potential of Organically Enriched Sediments under Sulfate- and Iron-Reducing Conditions as Revealed by the 16S rRNA Deep Sequencing. Journal of Water and Environment Technology, 2014, 12, 357-366.	0.3	19
14	Nitrifiers activity and community characteristics under stress conditions in partial nitrification systems treating ammonium-rich wastewater. Journal of Environmental Sciences, 2018, 73, 1-8.	3.2	19
15	Efficient conversion of organic nitrogenous wastewater to nitrate solution driven by comammox Nitrospira. Water Research, 2021, 197, 117088.	5.3	19
16	Microbial community in an anaerobic membrane bioreactor and its performance in treating organic solid waste under controlled and deteriorated conditions. Journal of Environmental Management, 2020, 269, 110786.	3.8	18
17	Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing. Frontiers in Microbiology, 2015, 6, 1206.	1.5	15
18	Microbial community analysis of sulfate-reducing passive bioreactor for treating acid mine drainage under failure conditions after long-term continuous operation. Journal of Environmental Chemical Engineering, 2018, 6, 5795-5800.	3.3	15

Τομο Αογάςι

#	Article	IF	CITATIONS
19	Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses. Journal of Hazardous Materials, 2022, 423, 127089.	6.5	15
20	Eukaryotic Microbiomes of Membrane-Attached Biofilms in Membrane Bioreactors Analyzed by High-Throughput Sequencing and Microscopic Observations. Microbes and Environments, 2018, 33, 98-101.	0.7	14
21	Long-term acclimatization of sludge microbiome for treatment of high-strength organic solid waste in anaerobic membrane bioreactor. Biochemical Engineering Journal, 2020, 154, 107461.	1.8	14
22	Direct comparison of bacterial communities in soils contaminated with different levels of radioactive cesium from the first Fukushima nuclear power plant accident. Science of the Total Environment, 2021, 756, 143844.	3.9	12
23	Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. Water Research, 2022, 216, 118276.	5.3	12
24	Stratification of Sulfur Species and Microbial Community in Launched Marine Sediment by an Improved Sulfur-Fractionation Method and 16S rRNA Gene Sequencing. Microbes and Environments, 2019, 34, 199-205.	0.7	11
25	Comparative insights into genome signatures of ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. BMC Genomics, 2021, 22, 475.	1.2	9
26	Dead bacterial biomass-assimilating bacterial populations in compost revealed by high-sensitivity stable isotope probing. Environment International, 2019, 133, 105235.	4.8	8
27	Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing. Chemosphere, 2020, 254, 126810.	4.2	8
28	Activated sludge microbial communities of a chemical plant wastewater treatment facility with high-strength bromide ions and aromatic substances. Journal of General and Applied Microbiology, 2019, 65, 106-110.	0.4	7
29	Draft Genome Sequence of Azospira sp. Strain 113, a Nitrous Oxide-Reducing Bacterium Harboring Clade Il Type <i>nosZ</i> . Genome Announcements, 2018, 6, .	0.8	6
30	Effects of the Wastewater Flow Rate on Interactions between the Genus <i>Nitrosomonas</i> and Diverse Populations in an Activated Sludge Microbiome. Microbes and Environments, 2019, 34, 89-94.	0.7	6
31	Complete Genome Sequence of <i>Desulfuromonas</i> sp. Strain AOP6, an Iron(III) Reducer Isolated from Subseafloor Sediment. Microbiology Resource Announcements, 2020, 9, .	0.3	6
32	Activated sludge microbiome in a membrane bioreactor for treating Ramen noodle-soup wastewater. Journal of General and Applied Microbiology, 2020, 66, 339-343.	0.4	6
33	Transition of microbial community structures after development of membrane fouling in membrane bioreactors (MBRs). AMB Express, 2020, 10, 18.	1.4	5
34	Effective Se reduction by lactate-stimulated indigenous microbial communities in excavated waste rocks. Journal of Hazardous Materials, 2021, 403, 123908.	6.5	4
35	Nitrate-Driven Trophic Association of Sulfur-Cycling Microorganisms in Tsunami-Deposited Marine Sediment Revealed by High-Sensitivity ¹³ C-Bicarbonate Probing. Environmental Science & Technology, 2021, 55, 8410-8421.	4.6	4
36	Draft Genome Sequence of a Novel Lactate-Fermenting Bacterial Strain of the Family <i>Sporomusaceae</i> within the Class <i>Negativicutes</i> . Microbiology Resource Announcements, 2019. 8	0.3	3

Τομο Αογάςι

#	Article	IF	CITATIONS
37	Draft Genome Sequences of <i>Sulfurovum</i> spp. TSL1 and TSL6, Two Sulfur-Oxidizing Bacteria Isolated from Marine Sediment. Microbiology Resource Announcements, 2022, 11, e0092221.	0.3	3
38	Draft Genome Sequence of Geobacter pelophilus Strain Dfr2, a Ferric Iron–Reducing Bacterium. Genome Announcements, 2017, 5, .	0.8	2
39	Increase in sedimentary organic carbon with a change from hypoxic to oxic conditions. Marine Pollution Bulletin, 2021, 168, 112397.	2.3	2
40	High and Rapid L-lactic Acid Production by Alkaliphilic Enterococcus sp. by Adding Wheat Bran Hydrolysate. Fermentation Technology, 2016, 06, .	0.1	2
41	Draft Genome Sequences of the Ferric Iron-Reducing Geobacter sp. Strains AOG1 and AOG2, Isolated from Enrichment Cultures on Crystalline Iron(III) Oxides. Microbiology Resource Announcements, 2021, 10, e0091321.	0.3	0
42	Evaluation of dye decolorization using anaerobic granular sludge from an expanded granular sludge bed based on spectrometric and microbiome analyses. Journal of General and Applied Microbiology, 2022, , .	0.4	0