Franco Baldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708457/publications.pdf

Version: 2024-02-01

304743 377865 1,230 46 22 34 citations h-index g-index papers 46 46 46 1827 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget, 2018, 9, 9685-9705.	1.8	147
2	Methylmercury Resistance in <i>Desulfovibrio desulfuricans</i> Strains in Relation to Methylmercury Degradation. Applied and Environmental Microbiology, 1993, 59, 2479-2485.	3.1	90
3	Adhesion of <i>Acinetobacter venetianus</i> to Diesel Fuel Droplets Studied with In Situ Electrochemical and Molecular Probes. Applied and Environmental Microbiology, 1999, 65, 2041-2048.	3.1	85
4	Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiology Ecology, 2001, 36, 169-174.	2.7	57
5	Oil-degrading Acinetobacter strain RAG-1 and strains described as 'Acinetobacter venetianus sp. nov.' belong to the same genomic species. Research in Microbiology, 1999, 150, 69-73.	2.1	52
6	Biodiversity of prokaryotic communities in sediments of different sub-basins of the Venice lagoon. Research in Microbiology, 2009, 160, 307-314.	2.1	40
7	Modulation of chromium(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes. BioMetals, 1992, 5, 179-185.	4.1	39
8	Biodeterioration of a fresco by biofilm forming bacteria. International Biodeterioration and Biodegradation, 2006, 57, 168-173.	3.9	37
9	Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea,) Tj ETQq1 🛚	1 0.78431 1.8	4 rgBT /Ove <mark>rlo</mark>
10	Growth of Rhodosporidium toruloides Strain DBVPG 6662 on Dibenzothiophene Crystals and Orimulsion. Applied and Environmental Microbiology, 2003, 69, 4689-4696.	3.1	34
11	XAS analysis of a nanostructured iron polysaccharide produced anaerobically by a strain of Klebsiella oxytoca. BioMetals, 2012, 25, 875-881.	4.1	31
12	The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Research in Microbiology, 2013, 164, 439-449.	2.1	30
13	Structure of the Ironâ€Binding Exopolysaccharide Produced Anaerobically by the Gramâ€Negative Bacterium <i>Klebsiella oxytoca</i> BASâ€10. European Journal of Organic Chemistry, 2007, 2007, 5183-5189.	2.4	29
14	Arsenate and arsenite removal from contaminated water by iron oxides nanoparticles formed inside a bacterial exopolysaccharide. Journal of Environmental Chemical Engineering, 2019, 7, 102908.	6.7	29
15	Deterioration of medieval painting in the chapel of the Holy Nail, Siena (Italy) partially treated with Paraloid B72. International Biodeterioration and Biodegradation, 2009, 63, 844-850.	3.9	28
16	Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells. BioMetals, 2016, 29, 321-331.	4.1	28
17	Coal Depyritization by the Thermophilic Archaeon <i>Metallosphaera sedula</i> . Applied and Environmental Microbiology, 1993, 59, 2375-2379.	3.1	28
18	Fungal deterioration of medieval wall fresco determined by analysing small fragments containing copper. International Biodeterioration and Biodegradation, 2006, 57, 7-13.	3.9	27

#	Article	IF	Citations
19	Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microbial Cell Factories, 2012, 11, 152.	4.0	27
20	Alkylation of ionic mercury to methylmercury and dimethylmercury by methylcobalamin: Simultaneous determination by purge-and-trap GC in line with FTIR. Applied Organometallic Chemistry, 1993, 7, 487-493.	3.5	25
21	Dimethylmercury and dimethylmercury-sulfide of microbial origin in the biogeochemical cycle of HG. Water, Air, and Soil Pollution, 1995, 80, 805-815.	2.4	25
22	A Comparison of MER::LUX Whole Cell Biosensors And Moss, A Bioindicator, For Estimating Mercury Pollution. Water, Air, and Soil Pollution, 2006, 173, 163-175.	2.4	24
23	Aqueous biphasic hydrogenations catalyzed by new biogenerated Pd-polysaccharide species. Applied Catalysis A: General, 2013, 451, 144-152.	4.3	22
24	Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry. Talanta, 2015, 132, 294-300.	5 . 5	22
25	A bio-generated Fe(iii)-binding exopolysaccharide used as new catalyst for phenol hydroxylation. Green Chemistry, 2010, 12, 1405.	9.0	20
26	Bio-generated metal binding polysaccharides as catalysts for synthetic applications and organic pollutant transformations. New Biotechnology, 2011, 29, 74-78.	4.4	19
27	Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons. Estuarine, Coastal and Shelf Science, 2012, 113, 105-115.	2.1	19
28	A Rapid Electrochemical Procedure for the Detection of Hg(0) Produced by Mercuric-Reductase: Application for Monitoring Hg-resistant Bacteria Activity Environmental Science & Environmental Science	10.0	19
29	Envelope glycosylation determined by lectins in microscopy sections ofÂAcinetobacter venetianus induced by diesel fuel. Research in Microbiology, 2003, 154, 417-424.	2.1	18
30	Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay. Applied Microbiology and Biotechnology, 2020, 104, 6325-6336.	3.6	15
31	Chromate tolerance in strains of Rhodosporidium toruloides modulated by thiosulfate and sulfur amino acids. BioMetals, 1995, 8, 99.	4.1	14
32	Response of a freshwater bacterial community to mercury contamination (HgCl2 and CH3HgCl) in a controlled system. Archives of Environmental Contamination and Toxicology, 1992, 22, 439-444.	4.1	12
33	XAS analysis of iron and palladium bonded to a polysaccharide produced anaerobically by a strain of <i>Klebsiella oxytoca < i>Iournal of Synchrotron Radiation, 2015, 22, 1215-1226.</i>	2.4	12
34	An extracellular polymeric substance quickly chelates mercury(II) with N-heterocyclic groups. Chemosphere, 2017, 176, 296-304.	8.2	11
35	Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues. Environmental Research, 2013, 125, 188-196.	7.5	10
36	A broad mercury resistant strain of Pseudomonas putida secretes pyoverdine under limited iron conditions and high mercury concentrations. BioMetals, 2016, 29, 1097-1106.	4.1	10

#	Article	IF	CITATIONS
37	Gas chromatography/Fourier transform infrared spectroscopy for determining traces of methane from biodegradation of methylmercury. Environmental Science & Environmental Science & Rechnology, 1988, 22, 836-839.	10.0	9
38	Diatom quantification and their distribution with salinity brines in coastal sediments of Terra Nova Bay (Antarctica). Marine Environmental Research, 2011, 71, 304-311.	2.5	9
39	Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community. Estuarine, Coastal and Shelf Science, 2012, 113, 96-104.	2.1	8
40	Bacteria-produced ferric exopolysaccharide nanoparticles as iron delivery system for truffles (Tuber) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf 5
41	Identification of alkane monoxygenase genes inAcinetobacter venetianus VE-C3 and analysis of mutants impaired in diesel fuel degradation. Annals of Microbiology, 2006, 56, 207-214.	2.6	6
42	Aqueous biphasic treatment of some nitrocompounds with hydrogen in the presence of a biogenerated Pd-polysaccharide. New Biotechnology, 2015, 32, 313-317.	4.4	6
43	Genomic traits of Klebsiella oxytoca DSM 29614, an uncommon metal-nanoparticle producer strain isolated from acid mine drainages. BMC Microbiology, 2018, 18, 198.	3.3	5
44	Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation. PLoS ONE, 2016, 11, e0145299.	2.5	4
45	Effects of biogenerated ferric hydroxides nanoparticles on truffle mycorrhized plants. Mycorrhiza, 2020, 30, 211-219.	2.8	3
46	Apple seeds in an excavated Roman amphora remained intact for 2000†years despite exposure to a broadly-degrading microbial community. Journal of Archaeological Science: Reports, 2019, 25, 472-485.	0.5	2