Abdelhafid Aqil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708379/publications.pdf

Version: 2024-02-01

623734 839539 21 505 14 18 citations g-index h-index papers 21 21 21 946 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioinspired Redoxâ€Active Catecholâ€Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage. Advanced Materials, 2017, 29, 1703373.	21.0	101
2	Fluorinated Poly(ionic liquid) Diblock Copolymers Obtained by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 121-126.	4.8	54
3	Transparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly. Polymer Chemistry, 2016, 7, 3998-4003.	3.9	46
4	Effect of nonionic surfactant and acidity on chitosan nanofibers with different molecular weights. Carbohydrate Polymers, 2011, 83, 470-476.	10.2	43
5	A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chemical Communications, 2015, 51, 9301-9304.	4.1	40
6	Integration of Redox-Active Catechol Pendants into Poly(ionic liquid) for the Design of High-Performance Lithium-Ion Battery Cathodes. Chemistry of Materials, 2018, 30, 5831-5835.	6.7	34
7	CO ₂ -sourced polycarbonates as solid electrolytes for room temperature operating lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9844-9853.	10.3	29
8	Poly(ionic liquid)â€Derived Nâ€Doped Carbons with Hierarchical Porosity for Lithium―and Sodiumâ€lon Batteries. Macromolecular Rapid Communications, 2019, 40, e1800545.	3.9	23
9	Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 2492-2499.	2.8	22
10	Multicomponent Radziszewski Emulsion Polymerization toward Macroporous Poly(ionic liquid) Catalysts. ACS Macro Letters, 2020, 9, 134-139.	4.8	20
11	A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application. Journal of Materials Chemistry A, 2014, 2, 15298-15302.	10.3	17
12	Understanding the Influence of Surface Oxygen Groups on the Electrochemical Behavior of Porous Carbons as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36054-36065.	8.0	17
13	Aldehyde-conjugated chitosan-graphene oxide glucodynamers: Ternary cooperative assembly and controlled chemical release. Carbohydrate Polymers, 2020, 230, 115634.	10.2	16
14	Nanostructured 3D porous hybrid network of N-doped carbon, graphene and Si nanoparticles as an anode material for Li-ion batteries. New Journal of Chemistry, 2017, 41, 10555-10560.	2.8	15
15	Continuous-porous N-doped carbon network as high-performance electrode for lithium-ion batteries. Journal of Materials Science, 2018, 53, 6135-6146.	3.7	10
16	Enhancing Performances of Polydopamine as Cathode for Lithium―and Potassium―lon Batteries by Simple Grafting of Sulfonate Groups. Batteries and Supercaps, 2021, 4, 374-379.	4.7	9
17	Charged Poly(D,Lâ€lactide) Nanofibers: Towards Customized Surface Properties. Macromolecular Symposia, 2011, 309-310, 20-27.	0.7	3
18	A novel synthetic route toward a PTA as active materials for organic radical batteries. , 2016, , .		3

#	Article	IF	CITATIONS
19	Atmospheric plasma deposition of bioinspired catechol-rich polymers: a promising route for the simple construction of redox-active thin films. Materials Advances, 2021, 2, 1248-1252.	5.4	2
20	Functionalized Graphite Nanoplatelet by Nitroxide Radical PILs as Anode Materials for Li-ion Battery. , 2019, , .		1
21	Conversion of Electrospun Chitosan into Chitin: A Robust Strategy to Tune the Properties of 2D Biomimetic Nanofiber Scaffolds. Polysaccharides, 2021, 2, 271-286.	4.8	O