Kristian KÃ,lby Kristensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8708284/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. Journal of Lipid Research, 2019, 60, 783-793.	4.2	92
2	The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. ELife, 2016, 5, .	6.0	78
3	The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. ELife, 2016, 5, e12095.	6.0	74
4	Structure of the lipoprotein lipase–GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1723-1732.	7.1	67
5	Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4337-4346.	7.1	56
6	A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6020-E6029.	7.1	51
7	The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines, 2021, 9, 782.	3.2	33
8	Evolution and Medical Significance of LU Domainâ^'Containing Proteins. International Journal of Molecular Sciences, 2019, 20, 2760.	4.1	29
9	The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
10	GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 702508.	3.7	22
11	ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPL's hydrolase domain. Journal of Lipid Research, 2020, 61, 1253.	4.2	16
12	Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. Journal of Clinical Investigation, 2022, 132, .	8.2	13
13	Dynamic Na+/H+ exchanger 1 (NHE1) – calmodulin complexes of varying stoichiometry and structure regulate Ca2+-dependent NHE1 activation. ELife, 2021, 10,	6.0	11
14	Expression and one-step purification of active LPL contemplated by biophysical considerations. Journal of Lipid Research, 2021, 62, 100149.	4.2	7