
Raymond C Trievel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator <scp>UHRF2</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 835-847.	1.5	3
2	Investigating the structure of UHRF2 TTDâ€₱HD with H3K9me3. FASEB Journal, 2022, 36, .	0.2	0
3	Differential processing and localization of human Nocturnin controls metabolism of mRNA and nicotinamide adenine dinucleotide cofactors. Journal of Biological Chemistry, 2020, 295, 15112-15133.	1.6	6
4	An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. ELife, 2020, 9, .	2.8	23
5	Structural and Functional Characterization of Sulfonium Carbon–Oxygen Hydrogen Bonding in the Deoxyamino Sugar Methyltransferase TylM1. Biochemistry, 2019, 58, 2152-2159.	1.2	Ο
6	A nonâ€enzymatic function associated with a putative histone demethylase regulates heterochromatin spreading and inheritance. FASEB Journal, 2019, 33, .	0.2	0
7	Structure, mechanism, and regulation of polycomb-repressive complex 2. Journal of Biological Chemistry, 2018, 293, 13805-13814.	1.6	60
8	Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases. Molecules, 2018, 23, 2965.	1.7	29
9	Reply to â€~Misreading chaperone–substrate complexes from random noise'. Nature Structural and Molecular Biology, 2018, 25, 990-991.	3.6	2
10	The structure of human Nocturnin reveals a conserved ribonuclease domain that represses target translation and abundance in cells. Nucleic Acids Research, 2018, 46, 6257-6270.	6.5	22
11	Water-Mediated Carbon–Oxygen Hydrogen Bonding Facilitates <i>S</i> -Adenosylmethionine Recognition in the Reactivation Domain of Cobalamin-Dependent Methionine Synthase. Biochemistry, 2018, 57, 3733-3740.	1.2	16
12	The HIV-1 Tat Protein Is Monomethylated at Lysine 71 by the Lysine Methyltransferase KMT7. Journal of Biological Chemistry, 2016, 291, 16240-16248.	1.6	16
13	Measuring the Kinetics of Molecular Association by Isothermal Titration Calorimetry. Methods in Enzymology, 2016, 567, 181-213.	0.4	10
14	Visualizing chaperone-assisted protein folding. Nature Structural and Molecular Biology, 2016, 23, 691-697.	3.6	52
15	Sulfur–Oxygen Chalcogen Bonding Mediates AdoMet Recognition in the Lysine Methyltransferase SET7/9. ACS Chemical Biology, 2016, 11, 748-754.	1.6	93
16	The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice. Blood, 2015, 126, 386-396.	0.6	74
17	Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures. Proteins: Structure, Function and Bioinformatics, 2015, 83, 403-410.	1.5	42
18	Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1404-1415.	0.9	58

RAYMOND C TRIEVEL

#	Article	IF	CITATIONS
19	Manipulating Unconventional CH-Based Hydrogen Bonding in a Methyltransferase via Noncanonical Amino Acid Mutagenesis. ACS Chemical Biology, 2014, 9, 1692-1697.	1.6	23
20	Crystal structure of <i>Saccharomyces cerevisiae</i> Aro8, a putative αâ€aminoadipate aminotransferase. Protein Science, 2013, 22, 1417-1424.	3.1	18
21	Conservation and Functional Importance of Carbon–Oxygen Hydrogen Bonding in AdoMet-Dependent Methyltransferases. Journal of the American Chemical Society, 2013, 135, 15536-15548.	6.6	92
22	Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases. Structure, 2013, 21, 98-108.	1.6	62
23	An overview of chromatin modifications. Biopolymers, 2013, 99, 95-97.	1.2	3
24	Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. Journal of Biological Chemistry, 2012, 287, 41576-41582.	1.6	251
25	Crystal Structure and Functional Analysis of JMJD5 Indicate an Alternate Specificity and Function. Molecular and Cellular Biology, 2012, 32, 4044-4052.	1.1	59
26	Crystal structure of homoisocitrate dehydrogenase from <i>Schizosaccharomyces pombe</i> . Proteins: Structure, Function and Bioinformatics, 2012, 80, 661-666.	1.5	7
27	Purification and assay protocols for obtaining highly active Jumonji C demethylases. Analytical Biochemistry, 2012, 420, 48-53.	1.1	24
28	Direct Evidence for Methyl Group Coordination by Carbon-Oxygen Hydrogen Bonds in the Lysine Methyltransferase SET7/9. Journal of Biological Chemistry, 2011, 286, 18658-18663.	1.6	55
29	Structure and Function of Histone H3 Lysine 9 Methyltransferases and Demethylases. ChemBioChem, 2011, 12, 254-263.	1.3	75
30	Application of a high-throughput fluorescent acetyltransferase assay to identify inhibitors of homocitrate synthase. Analytical Biochemistry, 2011, 410, 133-140.	1.1	9
31	Substrate and product specificities of SET domain methyltransferases. Epigenetics, 2011, 6, 1059-1067.	1.3	117
32	Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20526-20531.	3.3	120
33	Structural Basis for l-Lysine Feedback Inhibition of Homocitrate Synthase*. Journal of Biological Chemistry, 2010, 285, 10446-10453.	1.6	28
34	SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation. Journal of Biological Chemistry, 2010, 285, 31849-31858.	1.6	57
35	The Cellular Lysine Methyltransferase Set7/9-KMT7 Binds HIV-1 TAR RNA, Monomethylates the Viral Transactivator Tat, and Enhances HIV Transcription. Cell Host and Microbe, 2010, 7, 234-244.	5.1	88
36	Molecular Mechanisms of Lysine Methylation. FASEB Journal, 2010, 24, 78.3.	0.2	0

RAYMOND C TRIEVEL

#	Article	IF	CITATIONS
37	Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis. Journal of Biological Chemistry, 2009, 284, 35769-35780.	1.6	34
38	Regulation of H3K4 Trimethylation via Cps40 (Spp1) of COMPASS Is Monoubiquitination Independent: Implication for a Phe/Tyr Switch by the Catalytic Domain of Set1. Molecular and Cellular Biology, 2009, 29, 3478-3486.	1.1	54
39	WDR5, a complexed protein. Nature Structural and Molecular Biology, 2009, 16, 678-680.	3.6	123
40	Histone modifying enzymes: Structures, mechanisms, and specificities. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 58-68.	0.9	272
41	Structural Basis of Protein Lysine Methylation. FASEB Journal, 2009, 23, 89.1.	0.2	Ο
42	Structural origins for the product specificity of SET domain protein methyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20659-20664.	3.3	106
43	Kinetic Manifestation of Processivity during Multiple Methylations Catalyzed by SET Domain Protein Methyltransferasesâ€. Biochemistry, 2007, 46, 3905-3915.	1.2	44
44	Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nature Structural and Molecular Biology, 2007, 14, 689-695.	3.6	247
45	Structural basis for the methylation site specificity of SET7/9. Nature Structural and Molecular Biology, 2006, 13, 140-146.	3.6	149
46	Molecular recognition of histone H3 by the WD40 protein WDR5. Nature Structural and Molecular Biology, 2006, 13, 698-703.	3.6	216
47	Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Current Opinion in Structural Biology, 2006, 16, 753-760.	2.6	83
48	Catalytic Roles for Carbon-Oxygen Hydrogen Bonding in SET Domain Lysine Methyltransferases. Journal of Biological Chemistry, 2006, 281, 19280-19287.	1.6	76
49	A coupled fluorescent assay for histone methyltransferases. Analytical Biochemistry, 2005, 342, 86-92.	1.1	112
50	Structure, Specificity, and Mechanism of Protein Lysine Methylation by SET Domain Enzymes. , 2005, , 211-226.		0
51	Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes and Development, 2005, 19, 1455-1465.	2.7	202
52	The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biology, 2005, 6, 227.	13.9	661
53	Structure and Function of Histone Methyltransferases. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 147-170.	0.4	65
54	Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Nature Structural and Molecular Biology, 2003, 10, 545-552.	3.6	119

#	Article	IF	CITATIONS
55	Structure and Catalytic Mechanism of a SET Domain Protein Methyltransferase. Cell, 2002, 111, 91-103.	13.5	240
56	Application of a Fluorescent Histone Acetyltransferase Assay to Probe the Substrate Specificity of the Human p300/CBP-Associated Factor. Analytical Biochemistry, 2000, 287, 319-328.	1.1	87
57	Catalytic Mechanism and Function of Invariant Glutamic Acid 173 from the Histone Acetyltransferase GCN5 Transcriptional Coactivator. Journal of Biological Chemistry, 1999, 274, 18157-18160.	1.6	198