List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16005-16014.	8.0	147
2	Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. Journal of Materials Chemistry, 2008, 18, 3909.	6.7	145
3	Highly Efficient Vacancy-Driven Photothermal Therapy Mediated by Ultrathin MnO ₂ Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 6267-6275.	8.0	108
4	Exploiting Single Atom Iron Centers in a Porphyrin-like MOF for Efficient Cancer Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 35228-35237.	8.0	105
5	Defective Porous Carbon Polyhedra Decorated with Copper Nanoparticles for Enhanced NIRâ€Driven Photothermal Cancer Therapy. Small, 2020, 16, e1905184.	10.0	95
6	Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs. ACS Applied Materials & Interfaces, 2016, 8, 9961-9968.	8.0	88
7	Precisely Controlled Up/Down onversion Liquid and Solid State Photoluminescence of Carbon Dots. Advanced Optical Materials, 2018, 6, 1800115.	7.3	79
8	High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots. Journal of Materials Chemistry C, 2017, 5, 9629-9637.	5.5	62
9	High efficiency red emission carbon dots based on phenylene diisocyanate for trichromatic white and red LEDs. Journal of Materials Chemistry C, 2018, 6, 9631-9635.	5.5	50
10	Vacancy-enhanced generation of singlet oxygen for photodynamic therapy. Chemical Science, 2019, 10, 2336-2341.	7.4	47
11	An NIR-sensitive layered supramolecular nanovehicle for combined dual-modal imaging and synergistic therapy. Nanoscale, 2017, 9, 10367-10374.	5.6	45
12	Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Research, 2018, 11, 1262-1273.	10.4	44
13	In situ bifunctionalized carbon dots with boronic acid and amino groups for ultrasensitive dopamine detection. Analytical Methods, 2016, 8, 3236-3241.	2.7	43
14	Exploiting Co Defects in CoFe-Layered Double Hydroxide (CoFe-LDH) Derivatives for Highly Efficient Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 54916-54926.	8.0	43
15	Remarkable nonlinear optical response of pyrazine-fused trichalcogenasumanenes and their application for optical power limiting. Journal of Materials Chemistry C, 2018, 6, 13114-13119.	5.5	42
16	Synthesis and microwave absorbing properties of poly(3,4â€ethylenedioxythiophene) (PEDOT) microspheres. Polymers for Advanced Technologies, 2011, 22, 532-537.	3.2	36
17	Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta, 2018, 184, 50-57.	5.5	34
18	Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. Journal of Materials Chemistry C, 2018, 6, 5957-5963.	5.5	34

#	Article	IF	CITATIONS
19	Controlled fabrication of highly conductive three-dimensional flowerlike poly (3,4-ethylenedioxythiophene) nanostructures. Journal of Materials Chemistry, 2011, 21, 7123.	6.7	31
20	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review, 2021, 8, nwaa155.	9.5	31
21	Microwave absorbing properties of Fe ₃ O ₄ –poly(3, 4â€ethylenedioxythiophene) hybrids in Iowâ€frequency band. Polymers for Advanced Technologies, 2014, 25, 83-88.	3.2	30
22	A facile process to produce highly conductive poly(3,4-ethylenedioxythiophene) films for ITO-free flexible OLED devices. Journal of Materials Chemistry C, 2014, 2, 916-924.	5.5	29
23	Controllable Photoluminescent and Nonlinear Optical Properties of Polymerizable Carbon Dots and Their Arbitrary Copolymerized Gel Glasses. Advanced Optical Materials, 2018, 6, 1701273.	7.3	29
24	Efficient Construction of Near-Infrared Absorption Donor–Acceptor Copolymers with and without Pt(II)-Incorporation toward Broadband Nonlinear Optical Materials. ACS Applied Materials & Interfaces, 2020, 12, 2944-2951.	8.0	29
25	Selfâ€Cycling Free Radical Generator from LDHâ€Based Nanohybrids for Ferroptosisâ€Enhanced Chemodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2100539.	7.6	28
26	Ultrathin Nanosheet-Supported Ag@Ag ₂ O Core–Shell Nanoparticles with Vastly Enhanced Photothermal Conversion Efficiency for NIR-II-Triggered Photothermal Therapy. ACS Biomaterials Science and Engineering, 2022, 8, 540-550.	5.2	27
27	Hydrogen-Rich 2D Halide Perovskite Scintillators for Fast Neutron Radiography. Journal of the American Chemical Society, 2021, 143, 21302-21311.	13.7	27
28	Hollow carbon nanospheres derived from biomass by-product okara for imaging-guided photothermal therapy of cancers. Journal of Materials Chemistry B, 2019, 7, 1920-1925.	5.8	24
29	Diketopyrrolopyrrole based donor–acceptor π-conjugated copolymers with near-infrared absorption for 532 and 1064 nm nonlinear optical materials. Journal of Materials Chemistry C, 2020, 8, 12993-13000.	5.5	23
30	Broadband optical limiting of a novel twisted tetrathiafulvalene incorporated donor–acceptor material and its Ormosil gel glasses. Journal of Materials Chemistry C, 2018, 6, 8495-8501.	5.5	22
31	Protein–Carbon Dot Nanohybrid-Based Early Blood–Brain Barrier Damage Theranostics. ACS Applied Materials & Interfaces, 2020, 12, 3445-3452.	8.0	21
32	Nanocarbon Framework-Supported Ultrafine Mo ₂ C@MoO _{<i>x</i>} Nanoclusters for Photothermal-Enhanced Tumor-Specific Tandem Catalysis Therapy. ACS Applied Materials & Interfaces, 2021, 13, 59649-59661.	8.0	20
33	Functionalization of hexagonal boron nitride nanosheets and their copolymerized solid glasses. 2D Materials, 2018, 5, 035036.	4.4	19
34	C ₉₆ H ₃₀ tailored single-layer and single-crystalline graphene quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 25002-25009.	2.8	17
35	Highly efficient photothermal heating <i>via</i> distorted edge-defects in boron quantum dots. Journal of Materials Chemistry B, 2020, 8, 9881-9887.	5.8	17
36	Nonlinear Optical Properties of Few‣ayer Rhenium Disulfide Nanosheets and Their Passively Qâ€switched Laser Application. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800837.	1.8	15

#	Article	IF	CITATIONS
37	Covalently Silane-Functionalized Antimonene Nanosheets and Their Copolymerized Gel Glasses for Broadband Vis–NIR Optical Limiting. ACS Applied Materials & Interfaces, 2021, 13, 897-903.	8.0	15
38	Tuning PANI nanostructure by driving force for diverse capacitance performance. RSC Advances, 2013, 3, 21315.	3.6	13
39	Carbon-Defect-Driven Boron Carbide for Dual-Modal NIR-II/Photoacoustic Imaging and Photothermal Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 3370-3378.	5.2	12
40	Excitationâ€Dependent Theranostic Nanosheet for Cancer Treatment. Advanced Healthcare Materials, 2018, 7, e1701123.	7.6	11
41	A tripartite-enzyme via curcumin regarded as zymoexciter towards highly efficient relieving reperfusion injury. Chemical Engineering Journal, 2022, 442, 136029.	12.7	11
42	Electron Donor–Acceptor Effect-Induced Organic/Inorganic Nanohybrids with Low Energy Gap for Highly Efficient Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 17920-17930.	8.0	10
43	Nanoscale Gd ₂ O ₂ S:Tb Scintillators for High-Resolution Fluorescent Imaging of Cold Neutrons. ACS Applied Nano Materials, 2022, 5, 8440-8447.	5.0	10
44	Single-Layered and Single-Crystalline Graphene Quantum Dots from 2D Polycyclic Compounds. Particle and Particle Systems Characterization, 2016, 33, 811-817.	2.3	9
45	In situ hydrosilane reduction and preparation of gold nanoparticle–gel glass composites with nonlinear optical properties. Journal of Materials Chemistry C, 2018, 6, 5624-5629.	5.5	9
46	Gold Rod-Polyethylene Glycol-Carbon Dot Nanohybrids as Phototheranostic Probes. Nanomaterials, 2018, 8, 706.	4.1	9
47	Strong optical limiting properties of Ormosil gel glasses doped with silver nano-particles. New Journal of Chemistry, 2019, 43, 6274-6278.	2.8	9
48	Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses. Advanced Composites and Hybrid Materials, 2018, 1, 397-403.	21.1	8
49	Migratory Shift in Oxidative Cyclodehydrogenation Reaction of Tetraphenylethylenes Containing Electronâ€Rich THDTAP Moiety. Chemistry - an Asian Journal, 2019, 14, 1860-1869.	3.3	7
50	Autoencoder based blind source separation for photoacoustic resolution enhancement. Scientific Reports, 2020, 10, 21414.	3.3	7
51	Study on the fluorescence properties of micron-submicron-nano BaFBr:Eu2+ phosphors. New Journal of Chemistry, 2020, 44, 13118-13124.	2.8	7
52	Antimony Sulfide Nanosheets with Size-Dependent Nonlinear Optical Properties for Q-Switched Pulse Applications. ACS Applied Nano Materials, 2021, 4, 13425-13431.	5.0	7
53	Revealing Mn doping effect in transition metal phosphides to trigger active centers for highly efficient chemodynamic and NIR-II photothermal therapy. Chemical Engineering Journal, 2022, 435, 134780.	12.7	7
54	Designed synthesis of ZnO/PEDOT core/shell hybrid nanotube arrays with enhanced electrochromic properties. Surface and Interface Analysis, 2020, 52, 389-395.	1.8	6

#	Article	IF	CITATIONS
55	Highly dispersed antimonene oxide quantum dots and their hybrid gel glasses for broadband nonlinear optical limiting. Journal of Materials Chemistry C, 2021, 9, 10084-10088.	5.5	5
56	Function toggle of tumor microenvironment responsive nanoagent for highly efficient free radical stress enhanced chemodynamic therapy. Nano Research, 2022, 15, 8228-8236.	10.4	5
57	Fast-response oxygen sensitive transparent coating for inner pressure ratiometric optical mapping. Journal of Materials Chemistry C, 2021, 9, 3919-3927.	5.5	4
58	Size-Dependent Nonlinear Optical Properties of Gd2O2S:Tb3+ Scintillators and Their Doped Gel Glasses. Molecules, 2022, 27, 85.	3.8	4
59	Fabrication of Self-Assembled PEDOT/PSS-ZnO Nanocables with Diverse Inner Core Sizes Facilitated by Vacuum Conditions. Macromolecular Rapid Communications, 2006, 27, 356-360.	3.9	3
60	Ultralow Threshold Lasing from Carbon Dot–Ormosil Gel Hybrid-Based Planar Microcavity. Nanomaterials, 2021, 11, 1762.	4.1	3