Joseph F Costello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707820/publications.pdf

Version: 2024-02-01

70 papers

5,907 citations

147566 31 h-index 61 g-index

72 all docs

72 docs citations

times ranked

72

11627 citing authors

#	Article	IF	CITATIONS
1	Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma. Science, 2014, 343, 189-193.	6.0	1,147
2	Comprehensive Analysis of Hypermutation in Human Cancer. Cell, 2017, 171, 1042-1056.e10.	13.5	596
3	The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science, 2015, 348, 1036-1039.	6.0	451
4	Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. Journal of Clinical Investigation, 2017, 127, 1425-1437.	3.9	334
5	DNA methylation: an epigenetic mark of cellular memory. Experimental and Molecular Medicine, 2017, 49, e322-e322.	3.2	286
6	The genomic landscape of juvenile myelomonocytic leukemia. Nature Genetics, 2015, 47, 1326-1333.	9.4	233
7	Understanding TERT Promoter Mutations: A Common Path to Immortality. Molecular Cancer Research, 2016, 14, 315-323.	1.5	222
8	DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors. Cancer Cell, 2015, 28, 307-317.	7.7	221
9	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	9.4	198
10	Intratumoral Heterogeneity of the Epigenome. Cancer Cell, 2016, 29, 440-451.	7.7	172
11	Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathologica, 2015, 129, 597-607.	3.9	143
12	Temozolomide-associated hypermutation in gliomas. Neuro-Oncology, 2018, 20, 1300-1309.	0.6	130
13	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	0.6	119
14	Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant $\langle i \rangle$ IDH1 $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10743-10748.	3.3	109
15	Transcription Restores DNA Repair to Heterochromatin, Determining Regional Mutation Rates in Cancer Genomes. Cell Reports, 2014, 9, 1228-1234.	2.9	104
16	Disruption of the \hat{I}^21L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell, 2018, 34, 513-528.e8.	7.7	103
17	Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nature Genetics, 2022, 54, 649-659.	9.4	93
18	HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. Cell Reports, 2015, 10, 891-899.	2.9	79

#	Article	IF	CITATIONS
19	Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nature Communications, 2017, 8, 2127.	5.8	75
20	Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neuro-Oncology, 2017, 19, now176.	0.6	70
21	Treatment-Induced Mutagenesis and Selective Pressures Sculpt Cancer Evolution. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026617.	2.9	59
22	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	0.6	59
23	Epigenetic and transcriptional determinants of the human breast. Nature Communications, 2015, 6, 6351.	5.8	56
24	Multiplatform genomic profiling and magnetic resonance imaging identify mechanisms underlying intratumor heterogeneity in meningioma. Nature Communications, 2020, 11, 4803.	5.8	56
25	Mutant IDH1 Expression Drives <i>TERT</i> Promoter Reactivation as Part of the Cellular Transformation Process. Cancer Research, 2016, 76, 6680-6689.	0.4	55
26	MGMT promoter methylation level in newly diagnosed low-grade glioma is a predictor of hypermutation at recurrence. Neuro-Oncology, 2020, 22, 1580-1590.	0.6	55
27	Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade <i>IDH</i> -mutant gliomas. Neuro-Oncology, 2021, 23, 1872-1884.	0.6	48
28	Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathologica, 2019, 137, 851-854.	3.9	45
29	DNA methylation in brain development and gliomagenesis. Frontiers in Bioscience - Landmark, 2003, 8, s175-184.	3.0	44
30	Probing the phosphatidylinositol 3â€kinase/mammalian target of rapamycin pathway in gliomas: A phase 2 study of everolimus for recurrent adult lowâ€grade gliomas. Cancer, 2017, 123, 4631-4639.	2.0	43
31	Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncolmmunology, 2018, 7, e1391972.	2.1	42
32	Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro-Oncology, 2018, 20, 632-641.	0.6	33
33	Genomic Profiling of BDE-47 Effects on Human Placental Cytotrophoblasts. Toxicological Sciences, 2019, 167, 211-226.	1.4	32
34	Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget, 2016, 7, 34942-34955.	0.8	32
35	Somatic and Germline <i>TP53</i> Alterations in Second Malignant Neoplasms from Pediatric Cancer Survivors. Clinical Cancer Research, 2017, 23, 1852-1861.	3.2	29
36	The long non-coding RNA <i>HOTAIR</i> i>is transcriptionally activated by HOXA9 and is an independent prognostic marker in patients with malignant glioma. Oncotarget, 2018, 9, 15740-15756.	0.8	28

#	Article	IF	CITATIONS
37	Cancer-specific loss of <i>TERT</i> activation sensitizes glioblastoma to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
38	Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nature Communications, 2014, 5, 5442.	5.8	25
39	Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nature Communications, 2021, 12, 92.	5.8	21
40	Spatial concordance of DNA methylation classification in diffuse glioma. Neuro-Oncology, 2021, 23, 2054-2065.	0.6	19
41	Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment. Cancer Research, 2020, 80, 5098-5108.	0.4	18
42	Gliomas arising in the setting of Li-Fraumeni syndrome stratify into two molecular subgroups with divergent clinicopathologic features. Acta Neuropathologica, 2020, 139, 953-957.	3.9	18
43	miRNA-independent function of long noncoding pri-miRNA loci. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	18
44	Restriction Landmark Genomic Scanning: Analysis of CpG Islands in Genomes by 2D Gel Electrophoresis. Methods in Molecular Biology, 2009, 507, 131-148.	0.4	17
45	Patient-derived cells from recurrent tumors that model the evolution of IDH-mutant glioma. Neuro-Oncology Advances, 2020, 2, vdaa088.	0.4	16
46	Early Noninvasive Metabolic Biomarkers of Mutant IDH Inhibition in Glioma. Metabolites, 2021, 11, 109.	1.3	15
47	Metabolic imaging detects elevated glucose flux through the pentose phosphate pathway associated with TERT expression in low-grade gliomas. Neuro-Oncology, 2021, 23, 1509-1522.	0.6	15
48	Deuterium Metabolic Imaging Reports on TERT Expression and Early Response to Therapy in Cancer. Clinical Cancer Research, 2022, 28, 3526-3536.	3.2	15
49	PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro-Oncology, 2022, 24, 1471-1481.	0.6	14
50	Multiplatform Molecular Profiling Reveals Epigenomic Intratumor Heterogeneity in Ependymoma. Cell Reports, 2020, 30, 1300-1309.e5.	2.9	11
51	Epigenomic programming in early fetal brain development. Epigenomics, 2020, 12, 1053-1070.	1.0	9
52	Functional analysis of low-grade glioma genetic variants predicts key target genes and transcription factors. Neuro-Oncology, 2021, 23, 638-649.	0.6	9
53	<i>TERT</i> promoter C228T mutation in neural progenitors confers growth advantage following telomere shortening <i>in vivo</i> Neuro-Oncology, 2022, 24, 2063-2075.	0.6	9
54	Oncogene brought into the loop. Nature, 2016, 529, 34-35.	13.7	6

#	Article	IF	CITATIONS
55	Prostate Cancer Progression and the Epigenome. New England Journal of Medicine, 2020, 383, 2287-2290.	13.9	5
56	Epigenomic contributions to tumor cell heterogeneity and plasticity. Nature Genetics, 2021, 53, 1403-1404.	9.4	3
57	Imaging biomarkers of TERT or GABPB1 silencing in TERT-positive glioblastoma. Neuro-Oncology, 2022, ,	0.6	3
58	PATH-12. TEMOZOLOMIDE-INDUCED HYPERMUTATION IS ASSOCIATED WITH HIGH-GRADE TRANSFORMATION, DISTANT RECURRENCE AND REDUCED SURVIVAL IN INITIALLY LOW GRADE IDH-MUTANT GLIOMAS. Neuro-Oncology, 2020, 22, ii166-ii166.	0.6	2
59	EPCO-31. EPIGENOMIC INTRATUMORAL HETEROGENEITY OF GLIOBLASTOMA IN THREE-DIMENSIONAL SPACE. Neuro-Oncology, 2020, 22, ii76-ii76.	0.6	2
60	TMOD-27. A NEURAL CREST CELL SUBPOPULATION UNDERLIES INTRATUMOR HETEROGENEITY IN MENINGIOMA. Neuro-Oncology, 2019, 21, vi268-vi268.	0.6	1
61	CSIG-24. GABP LINKS AMPK SIGNALING TO TERT REGULATION IN A TERT PROMOTER MUTATION DEPENDENT MANNER. Neuro-Oncology, 2019, 21, vi49-vi49.	0.6	1
62	MPTH-29CONNECTING MUTANT GENOTYPES TO ABERRANT TRANSCRIPTIONAL SIGNATURES ACROSS SERIAL SECTIONS OF A HUMAN TUMOR. Neuro-Oncology, 2015, 17, v144.4-v145.	0.6	0
63	CBIO-02. MUTANT IDH EXPRESSION DRIVES TERT PROMOTER REACTIVATION AS PART OF THE CELLULAR TRANSFORMATION PROCESS. Neuro-Oncology, 2016, 18, vi35-vi35.	0.6	0
64	IMMU-11. SPATIOTEMPORAL IMMUNOGENOMIC ANALYSIS OF THE T-CELL REPERTOIRE IN IDH-MUTANT LOWER GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi121-vi121.	0.6	0
65	GENE-47. A 3D ATLAS TO EVALUATE THE SPATIAL PATTERNING OF GENETIC ALTERATIONS AND TUMOR CELL STATES IN GLIOMA. Neuro-Oncology, 2019, 21, vi107-vi108.	0.6	0
66	GENE-43. TARGETING GABPb1L INHIBITS IN VIVO GROWTH OF TERT PROMOTER MUTANT GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi106-vi107.	0.6	0
67	EPCO-36. GENOMIC INSTABILITY AND TRANSCRIPTOMIC SIGNATURES UNDERLYING EPIGENETIC MENINGIOMA SUBGROUPS REVEALS MECHANISMS OF IMMUNE INFILTRATION AND THERAPEUTIC VULNERABILITIES. Neuro-Oncology, 2020, 22, ii77-ii77.	0.6	0
68	BIOM-19. METABOLIC ALTERATION INDUCED BY SELECTIVE KNOCK DOWN OF GABPB1L IN U251 CELLS. Neuro-Oncology, 2020, 22, ii5-ii6.	0.6	0
69	TAMI-08. A TALE OF TWO TELOMERE MAINTENANCE MECHANISMS: TERT EXPRESSION AND THE ALT PATHWAY INDUCE UNIQUE MRS-DETECTABLE METABOLIC REPROGRAMMING IN LOW-GRADE GLIOMAS. Neuro-Oncology, 2020, 22, ii214-ii214.	0.6	0
70	BIOM-38. PI3K/AKT/mTOR SIGNALING PATHWAY ACTIVITY IN IDH-MUTANT DIFFUSE GLIOMA. Neuro-Oncology, 2020, 22, ii9-ii10.	0.6	0