Botong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707541/publications.pdf

Version: 2024-02-01

840776 794594 48 423 11 19 h-index citations g-index papers 48 48 48 341 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	On viscoelastic fluid in a vertical porous media channel with Soret and Dufour effects. Applied Mathematics Letters, 2022, 124, 107656.	2.7	8
2	Numerical and analytical investigation to fractional third grade viscoelastic fluids in rotating frame with slip boundary conditions. Chinese Journal of Physics, 2022, 77, 1493-1501.	3.9	2
3	The effect of second order slip condition on MHD nanofluid flow around a semi-circular cylinder. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 353-367.	1.5	1
4	Natural convection and radiation heat transfer of power-law fluid food in symmetrical open containers. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1287-1298.	3.6	0
5	Numerical study of rotating electro-osmotic flow of double layers with a layer of fractional second-order fluid in a microchannel. Applied Mathematics Letters, 2021, 111, 106633.	2.7	18
6	Solving the boundary layer problems with buoyancy effect over a moving and permeable plate by a boundary shape function method. European Physical Journal Plus, 2021, 136, 1.	2.6	0
7	On the process of filtration of fractional viscoelastic liquid food. Communications in Theoretical Physics, 2021, 73, 045004.	2.5	1
8	Solving a singular beam equation by the method of energy boundary functions. Mathematics and Computers in Simulation, 2021, 185, 419-435.	4.4	3
9	Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 1019-1030.	1.5	0
10	The electro-osmotic flow and heat transfer of generalized Maxwell fluids with distributed-order time-fractional characteristics in microtubules under an alternating field. Physics of Fluids, 2021, 33, .	4.0	6
11	Solving a nonlinear inverse Sturm–Liouville problem with nonlinear convective term using a boundary functional method. Inverse Problems in Science and Engineering, 2020, 28, 1135-1153.	1.2	2
12	Identifying space-time dependent force on the vibrating Euler–Bernoulli beam by a boundary functional method. Journal of Inverse and Ill-Posed Problems, 2020, 28, 367-378.	1.0	2
13	Boundary layer flows of viscoelastic fluids over a non-uniform permeable surface. Computers and Mathematics With Applications, 2020, 79, 2376-2387.	2.7	10
14	Rayleigh quotient and orthogonality in the linear space of boundary functions, finding accurate upper bounds of natural frequencies of non-uniform beams. Archive of Applied Mechanics, 2020, 90, 1737-1753.	2.2	1
15	On fluid flow and heat transfer of turbulent boundary layer of pseudoplastic fluids on a semi-infinite plate. Physics of Fluids, 2020, 32, 073102.	4.0	6
16	Two immiscible stratified fluids with one nanofluid layer in a horizontal annulus. European Physical Journal Plus, 2020, 135, 1.	2.6	2
17	Forced and free vibrations of composite beams solved by an energetic boundary functions collocation method. Mathematics and Computers in Simulation, 2020, 177, 152-168.	4.4	5
18	A power-law liquid food flowing through an uneven channel with non-uniform suction/injection. International Journal of Heat and Mass Transfer, 2019, 144, 118639.	4.8	7

#	Article	IF	Citations
19	Heat Transfer of Power-Law Liquid Food in a Tank with Varying Stirrer Settings. International Journal of Food Engineering, 2019, 15, .	1.5	2
20	Power-law fluids over a viscous sheet with mass suction/blowing: Multiple solutions. AIP Advances, 2019, 9, .	1.3	5
21	Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions., 2019, 64, 679-693.		7
22	Novel method for analyzing the behavior of composite beams with non-smooth interfaces. International Journal of Mechanics and Materials in Design, 2019, 15, 671-679.	3.0	2
23	Highly accurate algorithms endowing with boundary functions for solving a nonlinear beam equation involving an integral term. Mathematical Methods in the Applied Sciences, 2018, 41, 1855-1869.	2.3	2
24	A new method for the deflection analysis of composite beams with periodically varying interfaces. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 718-726.	1.6	6
25	On the drag effect of one fluid driven by another in a vertical channel. AIP Advances, 2018, 8, 115313.	1.3	0
26	A General Algorithm on the Natural Vibration Analysis of Composite Beams with Arbitrary Complex Interfaces. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 995-1004.	1.5	0
27	An Investigation of the Forced Convection and Heat Transfer with a Cylindrical Agitator Subjected to Non-Newtonian Nanofluids. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 869-882.	1.5	0
28	On mixed convection of two immiscible layers with a layer of non-Newtonian nanofluid in a vertical channel. Powder Technology, 2017, 310, 351-358.	4.2	24
29	A Fast New Algorithm for Solving a Nonlinear Beam Equation under Nonlinear Boundary Conditions. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 397-400.	1.5	2
30	Reconstructing a second-order Sturm–Liouville operator by an energetic boundary function iterative method. Applied Mathematics Letters, 2017, 73, 49-55.	2.7	12
31	An upper bound theory to approximate the natural frequencies and parameters identification of composite beams. Composite Structures, 2017, 171, 131-144.	5.8	16
32	Effects of nanoparticle migration on non-Newtonian nanofluids in a channel with multiple heating and cooling regions. International Journal of Heat and Mass Transfer, 2017, 107, 836-845.	4.8	7
33	Vibration Analysis of Composite Beams with Sinusoidal Periodically Varying Interfaces. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 73, 57-67.	1.5	5
34	Application of Probabilistic and Nonprobabilistic Hybrid Reliability Analysis Based on Dynamic Substructural Extremum Response Surface Decoupling Method for a Blisk of the Aeroengine. International Journal of Aerospace Engineering, 2017, 2017, 1-11.	0.9	12
35	On heat transfer of weakly compressible power-law flows. Thermal Science, 2017, 21, 2709-2718.	1.1	0
36	A Mixed Analytical/Numerical Method for Velocity and Heat Transfer of Laminar Power-Law Fluids. Numerical Mathematics, 2016, 9, 315-336.	1.3	5

#	Article	IF	CITATIONS
37	On rheological characteristics of non-Newtonian nanofluids in the material forming process. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	4
38	Forced convection heat transfer of power law non-Newtonian fluids between two semi-infinite plates with variable thermal conductivity. Journal of Physics: Conference Series, 2016, 745, 032035.	0.4	1
39	Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Technology, 2016, 301, 379-386.	4.2	100
40	Effects of non-Newtonian behaviour on the thermal performance of nanofluids in a horizontal channel with discrete regions of heating and cooling. Applied Thermal Engineering, 2016, 94, 404-412.	6.0	27
41	A new diffusion for laminar boundary layer flow of power law fluids past a flat surface with magnetic effect and suction or injection. International Journal of Heat and Mass Transfer, 2015, 90, 1090-1097.	4.8	35
42	A finite element method for heat transfer of powerâ€law flow in channels with a transverse magnetic field. Mathematical Methods in the Applied Sciences, 2014, 37, 1121-1129.	2.3	10
43	Precipitation phenomenon of nanoparticles in power-law fluids over a rotating disk. Microfluidics and Nanofluidics, 2014, 17, 107-114.	2.2	13
44	Sedimentation and precipitation of nanoparticles in power-law fluids. Microfluidics and Nanofluidics, 2013, 15, 11-18.	2.2	18
45	Comparison Between Thermal Conductivity Models on Heat Transfer in Power-Law Non-Newtonian Fluids. Journal of Heat Transfer, 2012, 134, .	2.1	19
46	Effects of Viscous Dissipation on the Thermal Boundary Layer of Pseudoplastic Power-Law Non-Newtonian Fluids Using Discretization Method and the Boubaker Polynomials Expansion Scheme. ISRN Thermodynamics, 2012, 2012, 1-6.	0.6	3
47	A new model for flow and heat of a power law fluid in a pipe. Thermal Science, 2011, 15, 127-130.	1.1	9
48	An inverse problem to simulate the transport of chloride in concrete by time–space fractional diffusion model. Inverse Problems in Science and Engineering, 0, , 1-17.	1.2	3