Daniela Boehm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707329/publications.pdf Version: 2024-02-01

DANIELA ROEHM

#	Article	IF	CITATIONS
1	Plasma-Functionalized Water: from Bench to Prototype for Fresh-Cut Lettuce. Food Engineering Reviews, 2021, 13, 115-135.	5.9	24
2	The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chemistry, 2021, 342, 128283.	8.2	58
3	Biomolecules as Model Indicators of In Vitro and In Vivo Cold Plasma Safety. Frontiers in Physics, 2021, 8, .	2.1	1
4	Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges. Applied Sciences (Switzerland), 2021, 11, 1178.	2.5	14
5	Characterization of an atmospheric pressure air plasma device under different modes of operation and their impact on the liquid chemistry. Journal of Applied Physics, 2021, 129, .	2.5	13
6	Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing. Innovative Food Science and Emerging Technologies, 2021, 72, 102745.	5.6	7
7	Application of Plasma Technology in Bioscience and Biomedicine. Applied Sciences (Switzerland), 2021, 11, 7203.	2.5	3
8	Plasma Treatment of Liquids. , 2021, , 610-634.		2
9	Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. International Journal of Food Microbiology, 2020, 335, 108889.	4.7	22
10	Assessing the Biological Safety of Atmospheric Cold Plasma Treated Wheat Using Cell and Insect Models. Foods, 2020, 9, 898.	4.3	10
11	Temperature Stability and Effectiveness of Plasma-Activated Liquids over an 18 Months Period. Water (Switzerland), 2020, 12, 3021.	2.7	26
12	Safety evaluation of plasma-treated lettuce broth using <i>in vitro</i> and <i>in vivo</i> toxicity models. Journal Physics D: Applied Physics, 2020, 53, 274003.	2.8	9
13	Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study. Applied and Environmental Microbiology, 2020, 86, .	3.1	50
14	The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive. Frontiers in Nutrition, 2020, 7, 627483.	3.7	6
15	Plasma activated liquids: New decontamination solutions. Access Microbiology, 2020, 2, .	0.5	0
16	High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology, 2019, 293, 137-145.	4.7	56
17	Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiology, 2019, 84, 103226.	4.2	67
18	Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity. Scientific Reports, 2019, 9, 3955.	3.3	63

#	Article	IF	CITATIONS
19	Investigation of mechanisms involved in germination enhancement of wheat (<i>Triticum) Tj ETQq1 1 0.784314</i>	rgBT /Ove 3.0	rlock 10 Tf 5 69
20	Efficacy of Cold Plasma for Direct Deposition of Antibiotics as a Novel Approach for Localized Delivery and Retention of Effect. Frontiers in Cellular and Infection Microbiology, 2019, 9, 428.	3.9	8
21	The Effect of Atmospheric Cold Plasma on Bacterial Stress Responses and Virulence Using Listeria monocytogenes Knockout Mutants. Frontiers in Microbiology, 2019, 10, 2841.	3.5	18
22	Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International, 2018, 106, 509-521.	6.2	104
23	The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 2018, 36, 615-626.	9.3	270
24	Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of the Total Environment, 2018, 631-632, 298-307.	8.0	55
25	Translation of plasma technology from the lab to the food industry. Plasma Processes and Polymers, 2018, 15, 1700085.	3.0	114
26	Characterising the impact of postâ€treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Processes and Polymers, 2018, 15, 1700127.	3.0	38
27	Understanding the Differences Between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids. Plasma Medicine, 2018, 8, 299-320.	0.6	19
28	Hydra as a Model for Screening Ecotoxicological Effects of Plasma-Treated Water. Plasma Medicine, 2018, 8, 225-236.	0.6	4
29	Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innovative Food Science and Emerging Technologies, 2018, 49, 13-19.	5.6	72
30	Safety implications of plasma-induced effects in living cells – a review of <i>in vitro</i> and <i>in vivo</i> findings. Biological Chemistry, 2018, 400, 3-17.	2.5	42
31	Inhibition ofex vivoerythropoiesis by secreted and haemozoin-associatedPlasmodium falciparumproducts. Parasitology, 2018, 145, 1865-1875.	1.5	6
32	Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review. Biological Chemistry, 2018, 400, 77-86.	2.5	17
33	Hydrogen Peroxide and Beyond-the Potential of High-voltage Plasma-activated Liquids Against Cancerous Cells. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 815-823.	1.7	30
34	Achieving reactive species specificity within plasmaâ€activated water through selective generation using air spark and glow discharges. Plasma Processes and Polymers, 2017, 14, 1600207.	3.0	132
35	Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 2017, 66, 48-54. 	4.2	46
36	The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innovative Food Science and Emerging Technologies, 2017, 44, 36-45.	5.6	39

Daniela Boehm

#	Article	IF	CITATIONS
37	Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge. Applied Physics Letters, 2017, 110, 264102.	3.3	23
38	Controlling Microbial Safety Challenges of Meat Using High Voltage Atmospheric Cold Plasma. Frontiers in Microbiology, 2016, 7, 977.	3.5	47
39	Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innovative Food Science and Emerging Technologies, 2016, 38, 384-392.	5.6	60
40	Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Scientific Reports, 2016, 6, 21464.	3.3	115
41	Assessing stress responses to atmospheric cold plasma exposure using <i>Escherichia coli </i> knock-out mutants. Journal of Applied Microbiology, 2016, 121, 352-363.	3.1	18
42	Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 2016, 82, 450-458.	3.1	295
43	Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors. PLoS ONE, 2015, 10, e0138209.	2.5	124
44	Dielectric Barrier Discharge Atmospheric Cold Plasma for Inactivation of Pseudomonas aeruginosa Biofilms. Plasma Medicine, 2014, 4, 137-152.	0.6	45
45	Quantitative Assessment of Blood Coagulation by Cold Atmospheric Plasma. Plasma Medicine, 2014, 4, 153-163.	0.6	31
46	Simply red: A novel spectrophotometric erythroid proliferation assay as a tool for erythropoiesis and erythrotoxicity studies. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 34-41.	4.4	4
47	Anti-disease Therapy for Malaria - â€~Resistance Proof'?. Current Pharmaceutical Design, 2013, 19, 300-306.	1.9	4
48	Caspase-3 Is Involved in the Signalling in Erythroid Differentiation by Targeting Late Progenitors. PLoS ONE, 2013, 8, e62303.	2.5	27
49	Human Fetal Liver: An <i>In Vitro</i> Model of Erythropoiesis. Stem Cells International, 2011, 2011, 1-10.	2.5	6
50	The effect of mild agitation on in vitro erythroid development. Journal of Immunological Methods, 2010, 360, 20-29.	1.4	15
51	The potential of human peripheral blood derived CD34+ cells for ex vivo red blood cell production. Journal of Biotechnology, 2009, 144, 127-134.	3.8	36
52	Viability in Late Stages of Ex Vivo Erythropoiesis Is Enhanced by Increased Cell Density. Blood, 2008, 112, 4748-4748.	1.4	0
53	Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. Journal of Biotechnology, 2007, 132, 375-384.	3.8	78
54	Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microbial Cell Factories, 2005, 4, 9.	4.0	64