
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dipole Moment―and Molecular Orbitalâ€Engineered Phosphine Oxideâ€Free Host Materials for Efficient and Stable Blue Thermally Activated Delayed Fluorescence. Advanced Science, 2022, 9, e2102141.	5.6	21
2	Designing Stable Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters through Controlling the Intrinsic Stability of Triplet Excitons. Advanced Optical Materials, 2022, 10, .	3.6	7
3	Multipleâ€Resonance Extension and Spinâ€Vibronicâ€Couplingâ€Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency. Advanced Materials, 2022, 34, .	11.1	51
4	More than 25,000Âh device lifetime in blue phosphorescent organic light-emitting diodes via fast triplet up-conversion of n-type hosts with sub μs triplet exciton lifetime. Chemical Engineering Journal, 2022, 450, 137974.	6.6	9
5	High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nature Photonics, 2021, 15, 208-215.	15.6	335
6	20â€2: Invited Paper: Highâ€Efficiency, Longâ€Lifetime, Deepâ€Blue Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 243-244.	0.1	0
7	Three States Involving Vibronic Resonance is a Key to Enhancing Reverse Intersystem Crossing Dynamics of an Organoboron-Based Ultrapure Blue Emitter. Jacs Au, 2021, 1, 987-997.	3.6	48
8	Purely Spinâ€Vibronic Coupling Assisted Triplet to Singlet Upâ€Conversion for Real Deep Blue Organic Lightâ€Emitting Diodes with Over 20% Efficiency and y Color Coordinate of 0.05. Advanced Science, 2021, 8, e2101137.	5.6	81
9	Cohosts with efficient host-to-emitter energy transfer for stable blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 17412-17418.	2.7	7
10	An excited state managing molecular design platform of blue thermally activated delayed fluorescence emitters by ݀-linker engineering. Journal of Materials Chemistry C, 2020, 8, 1736-1745.	2.7	14
11	Spin–Vibronic Model for Quantitative Prediction of Reverse Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Systems. Journal of Chemical Theory and Computation, 2020, 16, 621-632.	2.3	53
12	Holistic Approach to the Mechanism Study of Thermal Degradation of Organic Light-Emitting Diode Materials. Journal of Physical Chemistry A, 2020, 124, 9589-9596.	1.1	1
13	High-efficiency blue organic light-emitting Diodes using emissive carbazole-triazine-based donor-acceptor molecules with high reverse intersystem crossing rates. Organic Electronics, 2019, 75, 105399.	1.4	6
14	A Novel Design Strategy for Suppressing Efficiency Roll-Off of Blue Thermally Activated Delayed Fluorescence Molecules through Donor–Acceptor Interlocking by C–C Bonds. Nanomaterials, 2019, 9, 1735.	1.9	7
15	Effect of the Number and Substitution Pattern of Carbazole Donors on the Singlet and Triplet State Energies in a Series of Carbazole-Oxadiazole Derivatives Exhibiting Thermally Activated Delayed Fluorescence. Chemistry of Materials, 2018, 30, 6389-6399.	3.2	17
16	An Alternative Host Material for Longâ€Lifespan Blue Organic Lightâ€Emitting Diodes Using Thermally Activated Delayed Fluorescence. Advanced Science, 2017, 4, 1600502.	5.6	103
17	New sulfone-based electron-transport materials with high triplet energy for highly efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 10129-10137.	2.7	31
18	A facile route for the preparation of organic bistable memory devices based on size-controlled conducting polypyrrole nanoparticles. Organic Electronics, 2013, 14, 979-983.	1.4	34

#	Article	IF	CITATIONS
19	Fluorenobenzofuran as the core structure of high triplet energy host materials for green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 10537.	6.7	26
20	tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 5145.	6.7	43
21	Comparison of symmetric and asymmetric bipolar type high triplet energy host materials for deep blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 7239.	6.7	71
22	Phosphine oxide derivatives for organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 4233-4243.	6.7	153
23	Improved efficiency of inverted organic solar cells using organic hole collecting interlayer. Journal of Industrial and Engineering Chemistry, 2012, 18, 661-663.	2.9	6
24	Effect of Polarity of Small Molecule Interlayer Materials on the Open Circuit Voltage and Power Conversion Efficiency of Polymer Solar Cells. Journal of Physical Chemistry C, 2011, 115, 18789-18794.	1.5	14
25	Highly efficient blue light-emitting diodes containing spirofluorene derivatives end-capped with triphenylamine/phenylcarbazole. Synthetic Metals, 2011, 161, 2024-2030.	2.1	14
26	Above 20% external quantum efficiency in green and white phosphorescent organic light-emitting diodes using an electron transport type green host material. Organic Electronics, 2011, 12, 1893-1898.	1.4	12
27	Red phosphorescent organic light-emitting diodes using pyridine based electron transport type triplet host materials. Materials Chemistry and Physics, 2011, 127, 300-304.	2.0	7
28	Relationship between the particle size of quantum dots and bistability of the quantum dot embedded organic memory devices. Journal of Industrial and Engineering Chemistry, 2011, 17, 105-108.	2.9	4
29	External Quantum Efficiency Above 20% in Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 1436-1441.	11.1	392
30	Highly Efficient Blue Organic Light-Emitting Diodes Based on 2-(Diphenylamino)fluoren-7-ylvinylarene Derivatives that Bear a tert-Butyl Group. Chemistry - A European Journal, 2011, 17, 12994-13006.	1.7	28
31	High efficiency blue phosphorescent organic light-emitting diodes without electron transport layer. Journal of Luminescence, 2011, 131, 1621-1624.	1.5	1
32	Thermally Stable Organic Solar Cells Using Small Molecule Exciton Blocking Layer. Electrochemical and Solid-State Letters, 2011, 14, B59.	2.2	6
33	Improved Device Performances of Organic Solar Cells with Au Cathode Using a Phosphine Sulfide Type Cathode Modification Layer. Electrochemical and Solid-State Letters, 2011, 14, B93.	2.2	0
34	High Efficiency Organic Bistable Light-Emitting Diodes with Little Efficiency Roll-Off. Electrochemical and Solid-State Letters, 2011, 14, J31-J33.	2.2	4
35	Molecular Engineering of Blue Fluorescent Molecules Based on Silicon End apped Diphenylaminofluorene Derivatives for Efficient Organic Lightâ€Emitting Materials. Advanced Functional Materials, 2010, 20, 1345-1358.	7.8	80
36	Highly Efficient pâ€iâ€n and Tandem Organic Lightâ€Emitting Devices Using an Airâ€Stable and Lowâ€Temperatureâ€Evaporable Metal Azide as an nâ€Dopant. Advanced Functional Materials, 2010, 20, 1797-1802.	7.8	136

SOON OK JEON

#	Article	IF	CITATIONS
37	Highâ€Efficiency Deepâ€Blueâ€Phosphorescent Organic Lightâ€Emitting Diodes Using a Phosphine Oxide and a Phosphine Sulfide Highâ€Tripletâ€Energy Host Material with Bipolar Chargeâ€Transport Properties. Advanced Materials, 2010, 22, 1872-1876.	11.1	174
38	Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Lightâ€Emitting Diodes Using a Multilayer Structure Based on an Alcoholâ€Soluble Blue Phosphorescent Emitting Layer. Advanced Materials, 2010, 22, 4479-4483.	11.1	126
39	Lifetime study of red phosphorescent organic light-emitting diodes with a double doping structure. Journal of Industrial and Engineering Chemistry, 2010, 16, 813-815.	2.9	17
40	Effect of host and interlayer structures on device performances of hybrid white organic light-emitting diodes. Journal of Luminescence, 2010, 130, 1211-1215.	1.5	5
41	Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer. Journal of Luminescence, 2010, 130, 1708-1710.	1.5	0
42	Stable efficiency roll-off in red phosphorescent organic light-emitting diodes using a spirofluorene–benzofluorene based carbazole type host material. Journal of Luminescence, 2010, 130, 2184-2187.	1.5	12
43	An ethylcarbazole based phosphine oxide derivative as a host for deep blue phosphorescent organic light-emitting diode. Journal of Luminescence, 2010, 130, 2238-2241.	1.5	5
44	Red phosphorescent organic light-emitting diodes with indium tin oxide/single organic layer/Al simple device structure. Organic Electronics, 2010, 11, 36-40.	1.4	23
45	Small molecule based mixed interlayer for color control of solution processed multilayer white polymer light-emitting diodes. Organic Electronics, 2010, 11, 184-187.	1.4	13
46	Theoretical maximum quantum efficiency in red phosphorescent organic light-emitting diodes at a low doping concentration using a spirobenzofluorene type triplet host material. Organic Electronics, 2010, 11, 881-886.	1.4	51
47	The relationship between the substitution position of the diphenylphosphine oxide on the spirobifluorene and device performances of blue phosphorescent organic light-emitting diodes. Organic Electronics, 2010, 11, 1059-1065.	1.4	51
48	Synthesis of fused phenylcarbazole phosphine oxide based high triplet energy host materials. Tetrahedron, 2010, 66, 7295-7301.	1.0	19
49	A high triplet energy phosphine oxide derivative as a host and exciton blocking material for blue phosphorescent organic light-emitting diodes. Thin Solid Films, 2010, 518, 3716-3720.	0.8	23
50	High efficiency phosphorescent white organic light-emitting diodes using a spirofluorene based phosphine oxide host material. Thin Solid Films, 2010, 518, 4462-4466.	0.8	7
51	Pure white phosphorescent organic light-emitting diodes using a phosphine oxide derivative as a high triplet energy host material. Thin Solid Films, 2010, 518, 5827-5831.	0.8	6
52	Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes. Thin Solid Films, 2010, 519, 890-893.	0.8	12
53	Solution Processed Blue Phosphorescent Organic Light Emitting Diodes Using a Phosphine Oxide Host Material. Electrochemical and Solid-State Letters, 2010, 13, J71.	2.2	10
54	Efficiency improvement of polymer light-emitting diodes using a quantum dot interlayer between a hole transport layer and an emitting layer. Synthetic Metals, 2010, 160, 39-41.	2.1	6

#	Article	IF	CITATIONS
55	Bistability and improved hole injection in organic bistable light-emitting diodes using a quantum dot embedded hole transport layer. Synthetic Metals, 2010, 160, 1216-1218.	2.1	4
56	Multilayer stacked white polymer light-emitting diodes. Journal Physics D: Applied Physics, 2009, 42, 105115.	1.3	9
57	Simple high efficiency red phosphorescent organic light-emitting diodes without LiF electron injection layer. Journal Physics D: Applied Physics, 2009, 42, 225103.	1.3	10
58	Phenylcarbazoleâ€Based Phosphine Oxide Host Materials For High Efficiency In Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 3644-3649.	7.8	187
59	Hole injection improvement by doping of organic material in copper phthalocyanine. Journal of Industrial and Engineering Chemistry, 2009, 15, 907-909.	2.9	7
60	Organic bistable memory device using MoO3 nanocrystal as a charge trapping center. Organic Electronics, 2009, 10, 48-52.	1.4	29
61	High efficiency deep blue phosphorescent organic light-emitting diodes. Organic Electronics, 2009, 10, 170-173.	1.4	68
62	Improved device performances in polymer light-emitting diodes using a stamp transfer printing process. Organic Electronics, 2009, 10, 372-375.	1.4	15
63	Highly efficient pure white phosphorescent organic light-emitting diodes using a deep blue phosphorescent emitting material. Organic Electronics, 2009, 10, 681-685.	1.4	32
64	Improved efficiency in solution processed green phosphorescent organic light-emitting diodes using a double layer emitting structure fabricated by a stamp transfer printing process. Organic Electronics, 2009, 10, 978-981.	1.4	8
65	Efficient hole injection by doping of hexaazatriphenylene hexacarbonitrile in hole transport layer. Thin Solid Films, 2009, 517, 6109-6111.	0.8	29
66	Color stability and suppressed efficiency roll-off in white organic light-emitting diodes through management of interlayer and host properties. Journal of Industrial and Engineering Chemistry, 2009, 15, 420-422.	2.9	36
67	Organic light emitting bistable memory device with Cs doped electron transport layer. Journal of Industrial and Engineering Chemistry, 2009, 15, 328-330.	2.9	10
68	White organic light-emitting diodes using a quantum dot as a color changing material. Journal of Industrial and Engineering Chemistry, 2009, 15, 602-604.	2.9	15
69	Low driving voltage in white organic light-emitting diodes using an interfacial energy barrier free multilayer emitting structure. Journal of Luminescence, 2009, 129, 937-940.	1.5	5
70	Fabrication of high efficiency and color stable white organic light-emitting diodes by an alignment free mask patterning. Organic Electronics, 2009, 10, 384-387.	1.4	12
71	High efficiency red phosphorescent organic light-emitting diodes using a spirobenzofluorene type phosphine oxide as a host material. Organic Electronics, 2009, 10, 998-1000.	1.4	22
72	High efficiency pure white organic light-emitting diodes using a diphenylaminofluorene-based blue fluorescent material. Organic Electronics, 2009, 10, 1378-1381.	1.4	23

#	Article	IF	CITATIONS
73	Improved efficiency in organic solar cells through fluorinated interlayer induced crystallization. Organic Electronics, 2009, 10, 1583-1589.	1.4	12
74	Spiro[fluorene-7,9′-benzofluorene] host and dopant materials for blue light-emitting electroluminescence device. Synthetic Metals, 2009, 159, 1147-1152.	2.1	13
75	Air stable and low temperature evaporable Li3N as a n type dopant in organic light-emitting diodes. Synthetic Metals, 2009, 159, 1664-1666.	2.1	16
76	Color stable and interlayer free hybrid white organic light-emitting diodes using an area divided pixel structure. Synthetic Metals, 2009, 159, 1778-1781.	2.1	0
77	Origin of bistability in polyfluorene-based organic bistable devices. Synthetic Metals, 2009, 159, 1809-1811.	2.1	4
78	Highly efficient single-layer phosphorescent white organic light-emitting diodes using a spirofluorene-based host material. Optics Letters, 2009, 34, 407.	1.7	19
79	A phosphine oxide derivative as a universal electron transport material for organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 5940.	6.7	40