
Barbara L Finlay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707123/publications.pdf Version: 2024-02-01

RADRADA | FINLAY

#	Article	IF	CITATIONS
1	The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200523.	1.8	18
2	Developmental duration as an organizer of the evolving mammalian brain: scaling, adaptations, and exceptions. Evolution & Development, 2020, 22, 181-195.	1.1	8
3	Self-organization of cortical areas in the development and evolution of neocortex. Proceedings of the United States of America, 2020, 117, 29212-29220.	3.3	13
4	Generic Homo sapiens and Unique Mus musculus: Establishing the Typicality of the Modeled and the Model Species. Brain, Behavior and Evolution, 2019, 93, 122-136.	0.9	2
5	The neuroscience of vision and pain: evolution of two disciplines. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190292.	1.8	10
6	Human exceptionalism, our ordinary cortex and our research futures. Developmental Psychobiology, 2019, 61, 317-322.	0.9	16
7	Comparing Adult Hippocampal Neurogenesis Across Species: Translating Time to Predict the Tempo in Humans. Frontiers in Neuroscience, 2018, 12, 706.	1.4	54
8	Concepts, goals and the control of survival-related behaviors. Current Opinion in Behavioral Sciences, 2018, 24, 172-179.	2.0	40
9	Mammalian brain development and our grandmothering life history. Physiology and Behavior, 2018, 193, 55-68.	1.0	37
10	Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171169.	1.2	18
11	Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (<i>Trichechus) Tj ETQq1 1 0</i>	784314 rgBT	/Qyerlock 1(
12	Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains. PLoS Biology, 2016, 14, e1002556.	2.6	11
13	Developmental mechanisms channeling cortical evolution. Trends in Neurosciences, 2015, 38, 69-76.	4.2	124
14	Systematic, Cross-Cortex Variation in Neuron Numbers in Rodents and Primates. Cerebral Cortex, 2015, 25, 147-160.	1.6	131
15	Ganglion Cell and Displaced Amacrine Cell Density Distribution in the Retina of the Howler Monkey (Alouatta caraya). PLoS ONE, 2014, 9, e115291.	1.1	24
16	Evo-Devo and the Primate Isocortex: The Central Organizing Role of Intrinsic Gradients of Neurogenesis. Brain, Behavior and Evolution, 2014, 84, 81-92.	0.9	53
17	Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17642-17647.	3.3	66
18	The pain of altruism. Trends in Cognitive Sciences, 2014, 18, 615-617.	4.0	41

BARBARA L FINLAY

#	Article	IF	CITATIONS
19	Scaling the primate lateral geniculate nucleus: Niche and neurodevelopment in the regulation of magnocellular and parvocellular cell number and nucleus volume. Journal of Comparative Neurology, 2014, 522, 1839-1857.	0.9	9
20	Allocating structure to function: the strong links between neuroplasticity and natural selection. Frontiers in Human Neuroscience, 2014, 7, 918.	1.0	56
21	Human exceptionalism. Trends in Cognitive Sciences, 2013, 17, 199-201.	4.0	34
22	Variation in Human Brains May Facilitate Evolutionary Change toward a Limited Range of Phenotypes. Brain, Behavior and Evolution, 2013, 81, 74-85.	0.9	34
23	Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species. Journal of Neuroscience, 2013, 33, 7368-7383.	1.7	687
24	Embracing covariation in brain evolution. Progress in Brain Research, 2012, 195, 71-87.	0.9	48
25	Systematic, balancing gradients in neuron density and number across the primate isocortex. Frontiers in Neuroanatomy, 2012, 6, 28.	0.9	101
26	Thinking outside the cortex: social motivation in the evolution and development of language. Developmental Science, 2011, 14, 417-430.	1.3	63
27	Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2111-2123.	1.8	42
28	Evo-Devo and Brain Scaling: Candidate Developmental Mechanisms for Variation and Constancy in Vertebrate Brain Evolution. Brain, Behavior and Evolution, 2011, 78, 248-257.	0.9	78
29	Network Structure Implied by Initial Axon Outgrowth in Rodent Cortex: Empirical Measurement and Models. PLoS ONE, 2011, 6, e16113.	1.1	24
30	A conserved pattern of brain scaling from sharks to primates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12946-12951.	3.3	166
31	Late Still Equals Large. Brain, Behavior and Evolution, 2010, 75, 4-6.	0.9	15
32	Developmental sources of conservation and variation in the evolution of the primate eye. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8963-8968.	3.3	72
33	The developing and evolving retina: Using time to organize form. Brain Research, 2008, 1192, 5-16.	1.1	45
34	Number and topography of cones, rods and optic nerve axons in New and Old World primates. Visual Neuroscience, 2008, 25, 289-299.	0.5	62
35	Extrapolating brain development from experimental species to humans. NeuroToxicology, 2007, 28, 931-937.	1.4	735
36	Scaling of neuron number and volume of the pulvinar complex in new world primates: Comparisons with humans, other primates, and mammals. Journal of Comparative Neurology, 2007, 504, 265-274.	0.9	49

BARBARA L FINLAY

#	Article	IF	CITATIONS
37	Endless minds most beautiful. Developmental Science, 2007, 10, 30-34.	1.3	52
38	Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics, 2007, 5, 79-94.	1.5	288
39	Comparative Aspects of Visual System Development. , 2006, , 37-72.		12
40	Natural symmetry. Nature, 2005, 435, 149-149.	13.7	11
41	Peripheral variability and central constancy in mammalian visual system evolution. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 91-100.	1.2	73
42	The Calvinist Cortex: Penetrating Evolutionary Predestination Commentary on "Cortex, Countercurrent Context, and Dimensional Integration of Lifetime Memory―by Bjorn Merker. Cortex, 2004, 40, 577-579.	1.1	2
43	Reduction of early thalamic input alters adult corticocortical connectivity. Developmental Brain Research, 2002, 138, 35-43.	2.1	32
44	Developmental structure in brain evolution. Behavioral and Brain Sciences, 2001, 24, .	0.4	37
45	The specialization of the owl monkey retina for night vision. Color Research and Application, 2001, 26, S118-S122.	0.8	11
46	The cortex in multidimensional space: where do cortical areas come from?. Developmental Science, 2001, 4, 125-142.	1.3	40
47	Developmental structure in brain evolution. Behavioral and Brain Sciences, 2001, 24, 263-278.	0.4	452
48	The specialization of the owl monkey retina for night vision. Color Research and Application, 2001, 26, S118-S122.	0.8	1
49	Altered development of visual subcortical projections following neonatal thalamic ablation in the hamster. Journal of Comparative Neurology, 2000, 424, 165-178.	0.9	7
50	The course of human events: predicting the timing of primate neural development. Developmental Science, 2000, 3, 57-66.	1.3	110
51	Patterns of Vertebrate Neurogenesis and the Paths of Vertebrate Evolution. Brain, Behavior and Evolution, 1998, 52, 232-242.	0.9	175
52	So many problems, so little time: Evolution and the dendrite. Behavioral and Brain Sciences, 1997, 20, 564-565.	0.4	0
53	Chapter 25 What do developmental mapping rules optimize?. Progress in Brain Research, 1996, 112, 351-361.	0.9	3
54	Factors controlling the dendritic arborization of retinal ganglion cells. Visual Neuroscience, 1996, 13, 721-733.	0.5	43

BARBARA L FINLAY

#	Article	IF	CITATIONS
55	Regulation of retinal ganglion cell axon arbor size by target availability: Mechanisms of compression and expansion of the retinotectal projection. Journal of Comparative Neurology, 1994, 344, 581-597.	0.9	56
56	Changes in synaptic density after developmental compression or expansion of retinal input to the superior colliculus. Journal of Comparative Neurology, 1993, 330, 455-463.	0.9	8
57	The early development of thalamocortical and corticothalarnic projections. Journal of Comparative Neurology, 1993, 335, 16-41.	0.9	156
58	Cell death and the creation of regional differences in neuronal numbers. Journal of Neurobiology, 1992, 23, 1159-1171.	3.7	53
59	Thalamic Ablations and Neocortical Development: Alterations in Thalamic and Callosal Connectivity. Cerebral Cortex, 1991, 1, 241-261.	1.6	22
60	Master Mechanic, may I? Evolutionary permission versus evolutionary pressure. Behavioral and Brain Sciences, 1990, 13, 353-354.	0.4	1
61	Developmental changes in the distribution of retinal catecholaminergic neurones in hamsters and gerbils. Journal of Comparative Neurology, 1990, 292, 480-494.	0.9	23
62	Differential elasticity of the immature retina: A contribution to the development of the area centralis?. Visual Neuroscience, 1989, 2, 117-120.	0.5	33
63	Regressive Events in Brain Development and Scenarios for Vertebrate Brain Evolution. Brain, Behavior and Evolution, 1987, 30, 102-117.	0.9	96
64	THE OUTCOME OF PERINATAL BRAIN DAMAGE: THE RÔLE OF NORMAL NEURON LOSS AND AXON RETRACTION. Developmental Medicine and Child Neurology, 1986, 28, 375-389.	1.1	37
65	Cell degeneration in early development of the forebrain and cerebellum. Anatomy and Embryology, 1983, 167, 439-447.	1.5	48
66	Toward a neuroethology of mammalian vision. Behavioural Brain Research, 1981, 3, 133-149.	1.2	20
67	Acquisition of visuomotor behavior after neonatal tectal lesions in the hamster: The role of visual experience Journal of Comparative and Physiological Psychology, 1980, 94, 506-518.	1.8	19
68	A neuroethological approach to hamster vision. Behavioural Brain Research, 1980, 1, 479-496.	1.2	32
69	The role of the superior colliculus in visually guided locomotion and visual orienting in the hamster. Physiological Psychology, 1980, 8, 20-28.	0.8	105
70	Anomalous ipsilateral retinotectal projections in syrian hamsters with early lesions: Topography and functional capacity. Journal of Comparative Neurology, 1979, 183, 721-740.	0.9	119
71	Orderly compression of the retinotectal projection following partial tectal ablation in the newborn hamster. Nature, 1979, 280, 153-155.	13.7	56
72	Topography of visual and somatosensory projections to the superior colliculus of the golden hamster. Brain Research, 1978, 142, 223-235.	1.1	163

#	Article	IF	CITATIONS
73	Short-term response variability of monkey striate neurons. Brain Research, 1976, 105, 347-349.	1.1	71