
Davide Tampellini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9843-9848.	7.1	428
2	Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiology of Disease, 2005, 20, 187-198.	4.4	356
3	Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry, 2001, 76, 1766-1773.	3.9	350
4	Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathologica, 2010, 119, 523-541.	7.7	341
5	The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's disease. FEBS Letters, 2002, 510, 216-220.	2.8	247
6	Dysregulation of the mTOR Pathway Mediates Impairment of Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2010, 5, e12845.	2.5	219
7	In vivo detection of iron and neuromelanin by transcranial sonography: A new approach for early detection of substantia nigra damage. Movement Disorders, 2005, 20, 1278-1285.	3.9	205
8	Effects of Synaptic Modulation on β-Amyloid, Synaptophysin, and Memory Performance in Alzheimer's Disease Transgenic Mice. Journal of Neuroscience, 2010, 30, 14299-14304.	3.6	125
9	Synaptic Activity Reduces Intraneuronal $\hat{A^2}$, Promotes APP Transport to Synapses, and Protects against Al ² -Related Synaptic Alterations. Journal of Neuroscience, 2009, 29, 9704-9713.	3.6	119
10	Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Human Molecular Genetics, 2014, 23, 3716-3732.	2.9	115
11	Internalized Antibodies to the Aβ Domain of APP Reduce Neuronal Aβ and Protect against Synaptic Alterations. Journal of Biological Chemistry, 2007, 282, 18895-18906.	3.4	110
12	Triterpenoid CDDOâ€methylamide improves memory and decreases amyloid plaques in a transgenic mouse model of Alzheimer's disease. Journal of Neurochemistry, 2009, 109, 502-512.	3.9	99
13	Synaptic activity and Alzheimer's disease: a critical update. Frontiers in Neuroscience, 2015, 9, 423.	2.8	97
14	Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Human Molecular Genetics, 2012, 21, 5091-5105.	2.9	77
15	Chronic deep brain stimulation in an Alzheimer's disease mouse model enhances memory and reduces pathological hallmarks. Brain Stimulation, 2018, 11, 435-444.	1.6	49
16	PGCâ€1α: overexpression exacerbates βâ€amyloid and tau deposition in a transgenic mouse model of Alzheimer's disease. FASEB Journal, 2014, 28, 1745-1755.	0.5	47
17	Synapses, synaptic activity and intraneuronal Aβ in Alzheimer's disease. Frontiers in Aging Neuroscience, 2010, 2, .	3.4	40
18	Critical role of intraneuronal Aβ in Alzheimer's disease: Technical challenges in studying intracellular Aβ. Life Sciences, 2012, 91, 1153-1158.	4.3	36

DAVIDE TAMPELLINI

#	Article	IF	CITATIONS
19	Impaired β-Amyloid Secretion in Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2011, 31, 15384-15390.	3.6	35
20	High-Resolution 3D Reconstruction Reveals Intra-Synaptic Amyloid Fibrils. American Journal of Pathology, 2011, 179, 2551-2558.	3.8	27
21	Intraneuronal Aß Accumulation, Amyloid Plaques, and Synapse Pathology in Alzheimer's Disease. Neurodegenerative Diseases, 2012, 10, 56-59.	1.4	21
22	Analysis of Vesicular Trafficking in Primary Neurons by Live Imaging. Methods in Molecular Biology, 2011, 793, 343-350.	0.9	4