Dezhou Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8706798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€ion Batteries. Advanced Materials, 2019, 31, e1903675.	21.0	780
2	Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy and Environmental Science, 2011, 4, 2915.	30.8	479
3	A Confinement Strategy for Stabilizing ZIFâ€Derived Bifunctional Catalysts as a Benchmark Cathode of Flexible Allâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2018, 30, e1805268.	21.0	147
4	An ultrathin defect-rich Co ₃ O ₄ nanosheet cathode for high-energy and durable aqueous zinc ion batteries. Journal of Materials Chemistry A, 2019, 7, 21678-21683.	10.3	106
5	Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5828-5833.	10.3	95
6	Ni ₃ S ₂ @PANI core–shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel–zinc batteries. Journal of Materials Chemistry A, 2019, 7, 10629-10635.	10.3	81
7	Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. Journal of Materials Chemistry A, 2020, 8, 17938-17950.	10.3	81
8	Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Materials Research Bulletin, 2021, 135, 111134.	5.2	60
9	NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chemical Engineering Journal, 2020, 400, 125832.	12.7	58
10	Oxygen-rich interface enables reversible stibium stripping/plating chemistry in aqueous alkaline batteries. Nature Communications, 2021, 12, 14.	12.8	58
11	Porous MoO ₂ nanowires as stable and high-rate negative electrodes for electrochemical capacitors. Chemical Communications, 2017, 53, 3929-3932.	4.1	48
12	Ca-ion modified vanadium oxide nanoribbons with enhanced Zn-ion storage capability. Journal of Materials Chemistry A, 2022, 10, 5614-5619.	10.3	19
13	Controllable growth of La(OH)3 nanorod and nanotube arrays. CrystEngComm, 2010, 12, 4066.	2.6	18
14	Facile Synthesis of Porous arbon Nanoarchitectures as Advanced and Durable Electrodes for Supercapacitors. Particle and Particle Systems Characterization, 2019, 36, 1900115.	2.3	14
15	Intrinsic Carbon Defects Induced Reversible Antimony Chemistry for Highâ€Energy Aqueous Alkaline Batteries. Advanced Materials, 2022, 34, e2200085.	21.0	13
16	The ultrasonic-assisted growth of porous cobalt/nickel composite hydroxides as a super high-energy and stable cathode for aqueous zinc batteries. Journal of Materials Chemistry A, 2020, 8, 17741-17746.	10.3	12
17	Co ₃ O ₄ @Co Nanoparticles Embedded Porous Nâ€Rich Carbon Matrix for Efficient Oxygen Reduction. Particle and Particle Systems Characterization, 2017, 34, 1700074. 	2.3	11
18	Nickel@Nickel Oxide Dendritic Architectures with Boosted Electrochemical Reactivity for Aqueous Nickel–Zinc Batteries. ChemElectroChem, 2020, 7, 4572-4577.	3.4	7

#	Article	IF	CITATIONS
19	Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5053-5059.	10.3	5
20	Construction of dPCR and qPCR integrated system based on commercially available low-cost hardware. Analyst, The, 2022, 147, 3494-3503.	3.5	2