Zhui Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8706578/publications.pdf

Version: 2024-02-01

434195 471509 32 955 17 31 citations h-index g-index papers 32 32 32 1015 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosensors and Bioelectronics, 2014, 55, 216-219.	10.1	121
2	VHH Phage-Based Competitive Real-Time Immuno-Polymerase Chain Reaction for Ultrasensitive Detection of Ochratoxin A in Cereal. Analytical Chemistry, 2014, 86, 7471-7477.	6.5	75
3	Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging. PLoS ONE, 2015, 10, e0127419.	2.5	62
4	Anti-idiotypic nanobody: A strategy for development of sensitive and green immunoassay for Fumonisin B 1. Talanta, 2015, 143, 388-393.	5.5	61
5	Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B 1 detection in cereal. Analytica Chimica Acta, 2016, 924, 53-59.	5.4	57
6	One-Step Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Fusion for Detection of Aflatoxin B ₁ in Cereal. Journal of Agricultural and Food Chemistry, 2019, 67, 5221-5229.	5.2	55
7	Deoxynivalenol-mimic nanobody isolated from a na \tilde{A} -ve phage display nanobody library and its application in immunoassay. Analytica Chimica Acta, 2015, 887, 201-208.	5.4	51
8	Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3.4384. International Journal of Food Microbiology, 2017, 241, 325-330.	4.7	42
9	Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta, 2016, 147, 523-530.	5.5	41
10	Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Analytical Biochemistry, 2016, 493, 1-7.	2.4	41
11	Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals. Talanta, 2016, 147, 410-415.	5.5	40
12	Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Analytical and Bioanalytical Chemistry, 2015, 407, 5333-5341.	3.7	38
13	Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples. Food Chemistry, 2020, 319, 126546.	8.2	30
14	Isolation and characterisation of deoxynivalenol affinity binders from a phage display library based on single-domain camelid heavy chain antibodies (VHHs). Food and Agricultural Immunology, 2012, 23, 123-131.	1.4	29
15	Citrinin detection using phage-displayed anti-idiotypic single-domain antibody for antigen mimicry. Food Chemistry, 2015, 177, 97-101.	8.2	26
16	A peptide/maltose-binding protein fusion protein used to replace the traditional antigen for immunological detection of deoxynivalenol in food and feed. Food Chemistry, 2018, 268, 242-248.	8.2	26
17	Phage displayed anti-idiotypic nanobody mediated immuno-PCR for sensitive and environmentally friendly detection of mycotoxin ochratoxin A. Analytical Methods, 2016, 8, 7824-7831.	2.7	20
18	Landscape of variable domain of heavyâ€chainâ€only antibody repertoire from alpaca. Immunology, 2020, 161, 53-65.	4.4	17

#	Article	IF	CITATIONS
19	Magnetic beads carrying poly(acrylic acid) brushes as "nanobody containers―for immunoaffinity purification of aflatoxin B1 from corn samples. RSC Advances, 2015, 5, 77380-77387.	3.6	15
20	One Pot Method to Synthesize a Novel La–Zr Composite with Exceptionally High Fluoride Removal Performance. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 285-293.	3.7	13
21	One-step orientated immobilization of nanobodies and its application for immunoglobulin purification. Journal of Chromatography A, 2019, 1603, 15-22.	3.7	13
22	Preparation and characterization of novel IgG affinity resin coupling anti-Fc camelid single-domain antibodies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 983-984, 26-31.	2.3	11
23	Development of Real-Time Immuno-PCR Based on Phage Displayed an Anti-Idiotypic Nanobody for Quantitative Determination of Citrinin in Monascus. Toxins, 2019, 11, 572.	3.4	11
24	The <i>ctnF</i> gene is involved in citrinin and pigment synthesis in <i>Monascus aurantiacus</i> . Journal of Basic Microbiology, 2020, 60, 873-881.	3.3	11
25	Isolation and characterization of recombinant variable domain of heavy chain anti-idiotypic antibodies specific to aflatoxin B1. Biomedical and Environmental Sciences, 2014, 27, 118-21.	0.2	11
26	A sensitive electrochemical immunosensing interface for label-free detection of aflatoxin B1 by attachment of nanobody to MWCNTs-COOH@black phosphorene. Analytical and Bioanalytical Chemistry, 2022, 414, 1129-1139.	3.7	11
27	Engineering a recombination neutral protease I from <i>Aspergillus oryzae</i> to improve enzyme activity at acidic pH. RSC Advances, 2020, 10, 30692-30699.	3.6	8
28	Anti-idiotypic VHH mediated environmentally friendly immunoassay for citrinin without mycotoxin. Food and Agricultural Immunology, 2020, 31, 968-984.	1.4	7
29	Application of membrane filtration method to isolate uninuclei conidium in Aspergillus oryzae transformation system based on the pyrG marker. Food Science and Biotechnology, 2013, 22, 93-97.	2.6	5
30	Panning anti-LPS nanobody as a capture target to enrich Vibrio fluvialis. Biochemical and Biophysical Research Communications, 2019, 512, 531-536.	2.1	4
31	Research on the Mechanism of Action of a Citrinin and Anti-Citrinin Antibody Based on Mimotope X27. Toxins, 2020, 12, 655.	3.4	2
32	Tandem nanobody: A feasible way to improve the capacity of affinity chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1173, 122678.	2.3	1