
David R Tappin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8706496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Sissano, Papua New Guinea tsunami of July 1998 — offshore evidence on the source mechanism. Marine Geology, 2001, 175, 1-23.	0.9	328
2	The slump origin of the 1998 Papua New Guinea Tsunami. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 763-789.	1.0	305
3	New insights of tsunami hazard from the 2011 Tohoku-oki event. Marine Geology, 2011, 290, 46-50.	0.9	271
4	Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 2003, 3, 391-402.	1.5	256
5	Did a submarine landslide contribute to the 2011 Tohoku tsunami?. Marine Geology, 2014, 357, 344-361.	0.9	223
6	The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth System Sciences, 2008, 8, 243-266.	1.5	222
7	Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific Reports, 2019, 9, 11946.	1.6	170
8	Tsunami Generation by Submarine Mass Failure. II: Predictive Equations and Case Studies. Journal of Waterway, Port, Coastal and Ocean Engineering, 2005, 131, 298-310.	0.5	168
9	Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sedimentary Geology, 2012, 282, 27-39.	1.0	126
10	Sediment slump likely caused 1998 Papua New Guinea tsunami. Eos, 1999, 80, 329.	0.1	124
11	Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes?. Geology, 2006, 34, 485.	2.0	103
12	Coastal changes in the Sendai area from the impact of the 2011 TÅhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations. Sedimentary Geology, 2012, 282, 151-174.	1.0	103
13	Megatsunami deposits on Kohala volcano, Hawaii, from flank collapse of Mauna Loa. Geology, 2004, 32, 741.	2.0	80
14	The great Sumatra–Andaman earthquakes — Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth and Planetary Science Letters, 2008, 269, 118-130.	1.8	75
15	Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 2021, 9, .	0.8	65
16	Sedimentary features of tsunami deposits — Their origin, recognition and discrimination: An introduction. Sedimentary Geology, 2007, 200, 151-154.	1.0	47
17	Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping. Marine Geology, 2010, 275, 110-126.	0.9	47
18	Submarine mass failures as tsunami sources: their climate control. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2417-2434.	1.6	44

DAVID R TAPPIN

#	Article	IF	CITATIONS
19	Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea,) Tj ETQq1	1.0.7843 .8	14 rgBT /0
20	Tectonic controls on sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific. Bulletin of the Geological Society of America, 1998, 110, 483-496.	1.6	42
21	Elevated marine deposits in Bermuda record a late Quaternary megatsunami. Sedimentary Geology, 2007, 200, 155-165.	1.0	38
22	The English Channel †tsunami' of 27ÂJuneÂ2011 – a probable meteorological source. Weather, 2013, 68, 144-152.	0.6	36
23	Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry. Journal of Volcanology and Geothermal Research, 2013, 265, 60-77.	0.8	29
24	Phased occupation and retreat of the last British–Irish Ice Sheet in the southern North Sea; geomorphic and seismostratigraphic evidence of a dynamic ice lobe. Quaternary Science Reviews, 2017, 163, 114-134.	1.4	26
25	Indonesian Throughflow as a preconditioning mechanism for submarine landslides in the Makassar Strait. Geological Society Special Publication, 2020, 500, 195-217.	0.8	25
26	Possible Coseismic Large-scale Landslide off the Northern Coast of Papua New Guinea in July 1998: Geophysical and Geological Results from SOS Cruises. Pure and Applied Geophysics, 2003, 160, 1923-1943.	0.8	23
27	New High-Resolution Modeling of the 2018 Palu Tsunami, Based on Supershear Earthquake Mechanisms and Mapped Coastal Landslides, Supports a Dual Source. Frontiers in Earth Science, 2021, 8, .	0.8	23
28	Mass Wasting Processes - Offshore Sumatra. , 2007, , 327-336.		22
29	Submarine landslide megablocks show half of Anak Krakatau island failed on December 22nd, 2018. Nature Communications, 2021, 12, 2827.	5.8	21
30	Modeling the large runup along a narrow segment of the Kaikoura coast, New Zealand following the November 2016 tsunami from a potential landslide. Ocean Engineering, 2019, 175, 113-121.	1.9	16
31	Evidence for kilometre-scale Neogene exhumation driven by compressional deformation in the Irish Sea basin system. Geological Society Special Publication, 2008, 306, 91-119.	0.8	15
32	Tsunamis from submarine landslides. Geology Today, 2017, 33, 190-200.	0.3	15
33	Late cretaceous pelagic sediments, volcanic ASH and biotas from near the Louisville hotspot, Pacific Plate, paleolatitude â^1⁄442°S. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 71, 281-299.	1.0	14
34	Meteorologically generated tsunami-like waves in the North Sea on 1/2 July 2015 and 28 May 2008. Weather, 2016, 71, 68-74.	0.6	14
35	Mapping Recent Shoreline Changes Spanning the Lateral Collapse of Anak Krakatau Volcano, Indonesia. Applied Sciences (Switzerland), 2020, 10, 536.	1.3	14

Mass Transport Events and Their Tsunami Hazard. , 2010, , 667-684.

14

DAVID R TAPPIN

#	Article	IF	CITATIONS
37	Volcaniclastic gravity flow sedimentation on a frontal arc platform: The Miocene of Tonga. New Zealand Journal of Geology, and Geophysics, 2004, 47, 567-587.	1.0	13
38	The Subantarctic Front as a sedimentary conveyor belt for tsunamigenic submarine landslides. Marine Geology, 2020, 424, 106161.	0.9	12
39	Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record. Quaternary Science Reviews, 2016, 150, 55-66.	1.4	11
40	Architecture and Failure Mechanism of the Offshore Slump Responsible For the 1998 Papua New Guinea Tsunami. Advances in Natural and Technological Hazards Research, 2003, , 383-389.	1.1	9
41	Downward-propagating eruption following vent unloading implies no direct magmatic trigger for the 2018 lateral collapse of Anak Krakatau. Earth and Planetary Science Letters, 2022, 578, 117332.	1.8	9
42	Reply to "Mega-highstand or megatsunami? Discussion of McMurtry et al. "Elevated marine deposits in Bermuda record a late Quaternary megatsunami†Sed. Geol. 200 (2007) 155–165†by Paul J. Hearty and Storrs L. Olson. Sedimentary Geology, 2008, 203, 313-319.	1.0	8
43	Digital elevation models in the marine domain: investigating the offshore tsunami hazard from submarine landslides. Geological Society Special Publication, 2010, 345, 81-101.	0.8	7
44	The importance of geologists and geology in tsunami science and tsunami hazard. Geological Society Special Publication, 2018, 456, 5-38.	0.8	6
45	Bathymetry and Shallow Seismic Imaging of the 2018 Flank Collapse of Anak Krakatau. Frontiers in Earth Science, 2021, 8, .	0.8	6
46	Convective rear-flank downdraft as driver for meteotsunami along English Channel and North Sea coasts 28–29 May 2017. Natural Hazards, 2021, 106, 1445-1465.	1.6	5
47	Tsunamis: geology, hazards and risks – introduction. Geological Society Special Publication, 2018, 456, 1-3.	0.8	4
48	Multi-proxy palaeoecological approaches to submerged landscapes: a case study from 'Doggerland', in the southern North Sea. , 0, , 35-53.		4
49	The Hawaiian megatsunami of $110 \hat{A} \pm 10$ ka: the use of microfossils in detection. Journal of Micropalaeontology, 2006, 25, 55-56.	1.3	2
50	Benthos Supported by the Tunnel-Valleys of the Southern North Sea. , 2012, , 597-612.		2
51	The Kinematics of a Debris Avalanche on the Sumatra Margin. , 2010, , 117-125.		2
52	Geological records of storms, tsunamis and other extreme events. Island Arc, 2016, 25, 303-304.	0.5	1
53	Chemosynthetic seep communities triggered by seabed slumping off of northern Papua New Guinea. , 2020, , 875-887.		1