
Baoxia Mi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8705714/publications.pdf Version: 2024-02-01

Βλοχιλ Μι

#	Article	IF	CITATIONS
1	Highly efficient removal and sequestration of Cr(VI) in confined MoS2 interlayer Nanochannels: Performance and mechanism. Separation and Purification Technology, 2022, 293, 121104.	3.9	4
2	Tuning phase compositions of MoS ₂ nanomaterials for enhanced heavy metal removal: performance and mechanism. Physical Chemistry Chemical Physics, 2022, 24, 13305-13316.	1.3	6
3	Interfacial solar vapor generation for desalination and brine treatment: Evaluating current strategies of solving scaling. Water Research, 2021, 198, 117135.	5.3	57
4	Interfacial solar evaporator for brine treatment: the importance of resilience to high salinity. National Science Review, 2021, 8, nwab118.	4.6	9
5	Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chemical Engineering Journal, 2021, 422, 129998.	6.6	83
6	Facile and extensible preparation of multi-layered graphene oxide membranes with enhanced long-term desalting performance. Journal of Membrane Science, 2021, 638, 119695.	4.1	8
7	Interfacial Solar Evaporation by a 3D Graphene Oxide Stalk for Highly Concentrated Brine Treatment. Environmental Science & Technology, 2021, 55, 15435-15445.	4.6	62
8	Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge. Carbon, 2020, 160, 219-227.	5.4	36
9	Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Science Advances, 2020, 6, eaba9471.	4.7	54
10	Superselective Removal of Lead from Water by Two-Dimensional MoS ₂ Nanosheets and Layer-Stacked Membranes. Environmental Science & Technology, 2020, 54, 12602-12611.	4.6	87
11	Correlating Interlayer Spacing and Separation Capability of Graphene Oxide Membranes in Organic Solvents. ACS Nano, 2020, 14, 6013-6023.	7.3	81
12	Prospects of artificial tree for solar desalination. Current Opinion in Chemical Engineering, 2019, 25, 18-25.	3.8	15
13	Swelling characteristics and application of two-dimensional materials on hydrophilic quartz crystal resonant dew point sensor. Sensors and Actuators B: Chemical, 2019, 298, 126905.	4.0	7
14	Scaling up nanoporous graphene membranes. Science, 2019, 364, 1033-1034.	6.0	82
15	Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control. ACS Applied Materials & Interfaces, 2019, 11, 1699-1705.	4.0	37
16	Dew point measurements using montmorillonite (MTT) and molybdenum disulfide (MoS2) coated QCM sensors. Sensors and Actuators B: Chemical, 2019, 279, 122-129.	4.0	15
17	2D graphene oxide channel for water transport. Faraday Discussions, 2018, 209, 329-340.	1.6	26
18	Partially reduced graphene oxide and chitosan nanohybrid membranes for selective retention ofÂdivalent cations. RSC Advances, 2018, 8, 13656-13663.	1.7	17

ΒΑΟΧΙΑ ΜΙ

#	Article	IF	CITATIONS
19	Polyamide-crosslinked graphene oxide membrane for forward osmosis. Journal of Membrane Science, 2018, 545, 11-18.	4.1	126
20	Removal and Recovery of Heavy Metal lons by Two-dimensional MoS ₂ Nanosheets: Performance and Mechanisms. Environmental Science & Technology, 2018, 52, 9741-9748.	4.6	177
21	Regenerable Polyelectrolyte Membrane for Ultimate Fouling Control in Forward Osmosis. Environmental Science & Technology, 2017, 51, 3242-3249.	4.6	20
22	Effects of Particle Morphology on the Antibiofouling Performance of Silver Embedded Polysulfone Membranes and Rate of Silver Leaching. Industrial & Engineering Chemistry Research, 2017, 56, 2240-2246.	1.8	24
23	Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms. ACS Nano, 2017, 11, 6440-6450.	7.3	552
24	Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO ₂ Separation. Nano Letters, 2017, 17, 6752-6758.	4.5	82
25	Modification of thin film composite polyamide membranes with 3D hyperbranched polyglycerol for simultaneous improvement in their filtration performance and antifouling properties. Journal of Materials Chemistry A, 2017, 5, 23190-23197.	5.2	87
26	Synthetic Graphene Oxide Leaf for Solar Desalination with Zero Liquid Discharge. Environmental Science & Technology, 2017, 51, 11701-11709.	4.6	270
27	Understanding the Aqueous Stability and Filtration Capability of MoS ₂ Membranes. Nano Letters, 2017, 17, 7289-7298.	4.5	283
28	Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants. Journal of Membrane Science, 2017, 541, 235-243.	4.1	96
29	Environmental Applications of 2D Molybdenum Disulfide (MoS ₂) Nanosheets. Environmental Science & Technology, 2017, 51, 8229-8244.	4.6	647
30	Emerging investigators series: silica-crosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water. Environmental Science: Water Research and Technology, 2016, 2, 717-725.	1.2	21
31	Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry. Applied Surface Science, 2016, 363, 619-626.	3.1	37
32	Organic Fouling of Graphene Oxide Membranes and Its Implications for Membrane Fouling Control in Engineered Osmosis. Environmental Science & Technology, 2016, 50, 685-693.	4.6	144
33	Integration of forward osmosis and membrane distillation for sustainable wastewater reuse. Separation and Purification Technology, 2015, 156, 424-431.	3.9	73
34	A Combined Forward Osmosis and Membrane Distillation System for Sidestream Treatment. Journal of Water Resource and Protection, 2015, 07, 1111-1120.	0.3	18
35	Layer-by-Layer Assembly of Zeolite/Polyelectrolyte Nanocomposite Membranes with High Zeolite Loading. Environmental Science and Technology Letters, 2014, 1, 504-509.	3.9	19
36	Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: A novel approach to enhance membrane fouling resistance. Journal of Membrane Science, 2014, 449, 50-57.	4.1	121

ΒΑΟΧΙΑ ΜΙ

#	Article	IF	CITATIONS
37	Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 2014, 455, 349-356.	4.1	255
38	Graphene Oxide Membranes for Ionic and Molecular Sieving. Science, 2014, 343, 740-742.	6.0	960
39	Effects of organic macromolecular conditioning on gypsum scaling of forward osmosis membranes. Journal of Membrane Science, 2014, 450, 153-161.	4.1	87
40	Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. Journal of Membrane Science, 2014, 469, 80-87.	4.1	296
41	Molecular Dynamics Simulations of Polyamide Membrane, Calcium Alginate Gel, and Their Interactions in Aqueous Solution. Langmuir, 2014, 30, 9098-9106.	1.6	82
42	Hydrated Polyamide Membrane and Its Interaction with Alginate: A Molecular Dynamics Study. Langmuir, 2013, 29, 11600-11608.	1.6	73
43	Nanomaterials for Membrane Fouling Control: Accomplishments and Challenges. Advances in Chronic Kidney Disease, 2013, 20, 536-555.	0.6	30
44	Silica scaling and scaling reversibility in forward osmosis. Desalination, 2013, 312, 75-81.	4.0	154
45	Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environmental Science & Technology, 2013, 47, 3715-3723.	4.6	1,237
46	Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles. Water Research, 2013, 47, 2949-2958.	5.3	77
47	Modeling the Effect of Charge Density in the Active Layers of Reverse Osmosis and Nanofiltration Membranes on the Rejection of Arsenic(III) and Potassium Iodide. Environmental Science & Technology, 2013, 47, 420-428.	4.6	48
48	Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis. Membranes, 2013, 3, 354-374.	1.4	24
49	Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation. Journal of Membrane Science, 2012, 407-408, 136-144.	4.1	173
50	Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348, 337-345.	4.1	744
51	Gypsum Scaling and Cleaning in Forward Osmosis: Measurements and Mechanisms. Environmental Science & Technology, 2010, 44, 2022-2028.	4.6	324
52	Chemical and physical aspects of organic fouling of forward osmosis membranes. Journal of Membrane Science, 2008, 320, 292-302.	4.1	560
53	RBS Characterization of Arsenic(III) Partitioning from Aqueous Phase into the Active Layers of Thin-Film Composite NF/RO Membranes. Environmental Science & Technology, 2007, 41, 3290-3295.	4.6	29