
Daofeng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8705239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake. Journal of the American Chemical Society, 2008, 130, 1012-1016.	6.6	813
2	An Isoreticular Series of Metal–Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2010, 49, 5357-5361.	7.2	677
3	Framework-Catenation Isomerism in Metalâ~'Organic Frameworks and Its Impact on Hydrogen Uptake. Journal of the American Chemical Society, 2007, 129, 1858-1859.	6.6	608
4	An Interweaving MOF with High Hydrogen Uptake. Journal of the American Chemical Society, 2006, 128, 3896-3897.	6.6	567
5	Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracarboxylic Acid. Inorganic Chemistry, 2002, 41, 2087-2094.	1.9	473
6	A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation. Angewandte Chemie - International Edition, 2007, 46, 2458-2462.	7.2	358
7	Stabilization of Metalâ~'Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows. Journal of the American Chemical Society, 2009, 131, 9186-9188.	6.6	316
8	A Mesoporous Metalâ^'Organic Framework with Permanent Porosity. Journal of the American Chemical Society, 2006, 128, 16474-16475.	6.6	314
9	Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2017, 5, 10073-10091.	5.2	314
10	Controlled Hydrolysis of Metal–Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors. ACS Nano, 2019, 13, 7024-7030.	7.3	305
11	Optimizing Multivariate Metal–Organic Frameworks for Efficient C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2020, 142, 8728-8737.	6.6	289
12	A tubular europium–organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. Chemical Communications, 2013, 49, 11557.	2.2	286
13	Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 2020, 420, 213438.	9.5	280
14	Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 2021, 443, 213968.	9.5	246
15	Metal–organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm, 2016, 18, 193-206.	1.3	235
16	Syntheses and Characterizations of Copper(II) Polymeric Complexes Constructed from 1,2,4,5-Benzenetetracarboxylic Acid. Inorganic Chemistry, 2002, 41, 6161-6168.	1.9	210
17	A Metalâ^'Organic Nanotube Exhibiting Reversible Adsorption of (H ₂ O) ₁₂ Cluster. Journal of the American Chemical Society, 2008, 130, 14064-14065.	6.6	200
18	Hydrothermal syntheses, structures and properties of terephthalate-bridged polymeric complexes with zig-zag chain and channel structures. Dalton Transactions RSC, 2001, , 2335-2340.	2.3	180

#	Article	IF	CITATIONS
19	Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand. Chemical Communications, 2005, , 5447.	2.2	176
20	Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. Journal of Materials Chemistry A, 2015, 3, 12777-12785.	5.2	171
21	Syntheses and Characterizations of Zinc(II) Compounds Containing Three-Dimensional Interpenetrating Diamondoid Networks Constructed by Mixed Ligands. Crystal Growth and Design, 2004, 4, 775-780.	1.4	163
22	An unusual case of symmetry-preserving isomerism. Chemical Communications, 2010, 46, 1329.	2.2	162
23	Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability. Chemical Communications, 2005, , 2663.	2.2	161
24	Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. Journal of Materials Chemistry A, 2018, 6, 24486-24495.	5.2	159
25	A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. Journal of Materials Chemistry A, 2015, 3, 24016-24021.	5.2	154
26	Construction of Open Metal–Organic Frameworks Based on Predesigned Carboxylate Isomers: From Achiral to Chiral Nets. Chemistry - A European Journal, 2006, 12, 3768-3776.	1.7	151
27	Construction of Robust Open Metalâ``Organic Frameworks with Chiral Channels and Permanent Porosity. Inorganic Chemistry, 2007, 46, 2725-2734.	1.9	149
28	Novel Silver-Containing Supramolecular Frameworks Constructed by Combination of Coordination Bonds and Supramolecular Interactions. Inorganic Chemistry, 2003, 42, 7512-7518.	1.9	139
29	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5095-5099.	7.2	136
30	Two Solvent-Dependent Zinc(II) Supramolecular Isomers: Rare kgd and Lonsdaleite Network Topologies Based on a Tripodal Flexible Ligand. Crystal Growth and Design, 2011, 11, 5182-5187.	1.4	133
31	A yolk–shelled Co ₉ S ₈ /MoS ₂ –CN nanocomposite derived from a metal–organic framework as a high performance anode for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 4776-4782.	5.2	131
32	Fine-Tuning the Pore Environment of the Microporous Cu-MOF for High Propylene Storage and Efficient Separation of Light Hydrocarbons. ACS Central Science, 2019, 5, 1261-1268.	5.3	128
33	Metal–Organic Framework Derived Porous Hollow Co ₃ O ₄ /N–C Polyhedron Composite with Excellent Energy Storage Capability. ACS Applied Materials & Interfaces, 2017, 9, 10602-10609.	4.0	127
34	Syntheses, crystal structures and properties of two novel lanthanide–carboxylate polymeric complexes. Dalton Transactions RSC, 2002, , 1847-1851.	2.3	126
35	Topology Exploration in Highly Connected Rare-Earth Metal–Organic Frameworks via Continuous Hindrance Control. Journal of the American Chemical Society, 2019, 141, 6967-6975.	6.6	125
36	lsomer separation, conformation control of flexible cyclohexanedicarboxylate ligand in cadmium complexes. Chemical Communications, 2004, , 2104-2105.	2.2	124

#	Article	IF	CITATIONS
37	Co(II) Metalâ^'Organic Frameworks (MOFs) Assembled from Asymmetric Semirigid Multicarboxylate Ligands: Synthesis, Crystal Structures, and Magnetic Properties. Crystal Growth and Design, 2009, 9, 5273-5282.	1.4	124
38	Control over Interpenetration in Lanthanideâ^'Organic Frameworks: Synthetic Strategy and Gas-Adsorption Properties. Inorganic Chemistry, 2010, 49, 7605-7607.	1.9	122
39	Porous Zirconium Metal–Organic Framework Constructed from 2D → 3D Interpenetration Based on a 3,6-Connected kgd Net. Inorganic Chemistry, 2014, 53, 7086-7088.	1.9	118
40	Green Fabrication of Ultrathin Co ₃ O ₄ Nanosheets from Metal–Organic Framework for Robust High-Rate Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 41827-41836.	4.0	118
41	Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 11350-11358.	7.2	118
42	Preparation and Gas Adsorption Studies of Three Mesh-Adjustable Molecular Sieves with a Common Structure. Journal of the American Chemical Society, 2009, 131, 6445-6451.	6.6	117
43	A multi-aromatic hydrocarbon unit induced hydrophobic metal–organic framework for efficient C ₂ /C ₁ hydrocarbon and oil/water separation. Journal of Materials Chemistry A, 2017, 5, 1168-1175.	5.2	113
44	Regulating C ₂ H ₂ and CO ₂ Storage and Separation through Pore Environment Modification in a Microporous Ni-MOF. ACS Sustainable Chemistry and Engineering, 2019, 7, 2134-2140.	3.2	113
45	Selective selenization of mixed-linker Ni-MOFs: NiSe2@NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 272, 118976.	10.8	111
46	Two nanocage anionic metal–organic frameworks with rht topology and {[M(H ₂ 0) ₆] ₆ } ¹²⁺ charge aggregation for rapid and selective adsorption of cationic dyes. Chemical Communications, 2014, 50, 14674-14677.	2.2	110
47	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 3840-3845.	7.2	109
48	Construction of Metalâ^'Organic Frameworks with 1D Chain, 2D Grid, and 3D Porous Framework Based on a Flexible Imidazole Ligand and Rigid Benzenedicarboxylates. Crystal Growth and Design, 2010, 10, 895-902.	1.4	108
49	Bimetallic-MOF Derived Accordion-like Ternary Composite for High-Performance Supercapacitors. Inorganic Chemistry, 2018, 57, 10953-10960.	1.9	108
50	Luminescent Terbium-Organic Framework Exhibiting Selective Sensing of Nitroaromatic Compounds (NACs). Crystal Growth and Design, 2015, 15, 2589-2592.	1.4	107
51	A novel luminescent 3D polymer containing silver chains formed by ligand unsupported Ag–Ag interactions and organic spacers. Dalton Transactions RSC, 2002, , 291.	2.3	99
52	Syntheses and characterizations of a series of silver-carboxylate polymers. Inorganica Chimica Acta, 2004, 357, 991-1001.	1.2	95
53	Okraâ€Like Fe ₇ S ₈ /C@ZnS/N @C with Core–Doubleâ€6helled Structures as Robus and Highâ€Rate Sodium Anode. Small, 2020, 16, e1907641.	5.2	95
54	Novel Metal–Organic Framework Based on Cubic and Trisoctahedral Supermolecular Building Blocks: Topological Analysis and Photoluminescent Property. Crystal Growth and Design, 2012, 12, 2736-2739.	1.4	93

#	Article	IF	CITATIONS
55	Tetrazoleâ€Functionalized Zirconium Metalâ€Organic Cages for Efficient C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₂ /CO ₂ Separations. Angewandte Chemie - International Edition, 2021, 60, 17338-17343.	7.2	93
56	Dimerization of a Metal Complex through Thermally Induced Singleâ€Crystalâ€toâ€&ingleâ€Crystal Transformation or Mechanochemical Reaction. Angewandte Chemie - International Edition, 2011, 50, 7061-7064.	7.2	92
57	Dual-functional membrane decorated with flower-like metal–organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes. Journal of Hazardous Materials, 2021, 408, 124444.	6.5	92
58	Stability and Porosity Enhancement through Concurrent Ligand Extension and Secondary Building Unit Stabilization. Inorganic Chemistry, 2006, 45, 7566-7568.	1.9	90
59	Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH) ₂ supercapacitor electrodes. Nanoscale, 2019, 11, 9598-9607.	2.8	90
60	Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in rht-Type MOFs. Inorganic Chemistry, 2012, 51, 10350-10355.	1.9	89
61	Supramolecular Isomerism in Honeycomb Metalâ~'Organic Frameworks Driven by CH···π Interactions: Homochiral Crystallization from an Achiral Ligand through Chiral Inducement. Inorganic Chemistry, 2010, 49, 8650-8652.	1.9	87
62	Unprecedented Solvent-Dependent Sensitivities in Highly Efficient Detection of Metal Ions and Nitroaromatic Compounds by a Fluorescent Barium Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1782-1787.	1.9	87
63	Syntheses and structures of two novel copper complexes constructed from unusual planar tetracopper(ii) SBUs. Chemical Communications, 2003, , 1528.	2.2	84
64	Porous Metal-Organic Frameworks Based on an Anthracene Derivative: Syntheses, Structure Analysis, and Hydrogen Sorption Studies. Inorganic Chemistry, 2009, 48, 5263-5268.	1.9	81
65	Self-Assembly of Metalâ^'Organic Supramolecules: From a Metallamacrocycle and a Metalâ^'Organic Coordination Cage to 1D or 2D Coordination Polymers Based on Flexible Dicarboxylate Ligands. Inorganic Chemistry, 2010, 49, 4117-4124.	1.9	81
66	Efficient ORR electrocatalytic activity of peanut shell-based graphitic carbon microstructures. Journal of Materials Chemistry A, 2018, 6, 12018-12028.	5.2	81
67	Porous Lanthanide–Organic Frameworks: Control over Interpenetration, Gas Adsorption, and Catalyst Properties. Crystal Growth and Design, 2013, 13, 3154-3161.	1.4	80
68	TiO ₂ â€Coated Interlayerâ€Expanded MoSe ₂ /Phosphorusâ€Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage. Advanced Science, 2019, 6, 1801222.	5.6	80
69	<i>In situ</i> N-doped carbon modified (Co _{0.5} Ni _{0.5}) ₉ S ₈ solid-solution hollow spheres as high-capacity anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8268-8276.	5.2	79
70	A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Nanoscale, 2018, 10, 22758-22765.	2.8	78
71	An ultrafast responsive NO ₂ gas sensor based on a hydrogen-bonded organic framework material. Chemical Communications, 2020, 56, 703-706.	2.2	77
72	(10,3)-a Noninterpenetrated Network Built from a Piedfort Ligand Pair. Inorganic Chemistry, 2006, 45, 1897-1899.	1.9	75

#	Article	IF	CITATIONS
73	A novel Sm–Co polymeric complex formed via metal-mediated oxidation–hydrolysis of orotic acid in a hydrothermal reaction. Inorganic Chemistry Communication, 2003, 6, 815-818.	1.8	74
74	Interpenetrating Polyhedral MOF with a Primitive Cubic Network Based on Supermolecular Building Blocks Constructed of a Semirigid <i>C</i> ₃ -Symmetric Carboxylate Ligand. Inorganic Chemistry, 2009, 48, 8057-8059.	1.9	74
75	Multifunctional lanthanide–organic frameworks for fluorescent sensing, gas separation and catalysis. Dalton Transactions, 2016, 45, 3743-3749.	1.6	74
76	Self-assembly of MOF on MXene nanosheets and in-situ conversion into superior nickel phosphates/MXene battery-type electrode. Chemical Engineering Journal, 2021, 425, 130602.	6.6	74
77	Diverse Ni(<scp>ii</scp>) MOFs constructed from asymmetric semi-rigid V-shaped multicarboxylate ligands: structures and magnetic properties. CrystEngComm, 2010, 12, 1096-1102.	1.3	73
78	A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Transactions, 2016, 45, 61-65.	1.6	73
79	Exploring the sandwich antibacterial membranes based on UiO-66/graphene oxide for forward osmosis performance. Carbon, 2019, 144, 321-332.	5.4	73
80	Efficient dye nanofiltration of a graphene oxide membrane <i>via</i> combination with a covalent organic framework by hot pressing. Journal of Materials Chemistry A, 2019, 7, 24301-24310.	5.2	72
81	Pb(ii) metal–organic nanotubes based on cyclodextrins: biphasic synthesis, structures and properties. Chemical Science, 2012, 3, 2282.	3.7	70
82	A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO ₂ adsorption and separation of organic dyes. Journal of Materials Chemistry A, 2016, 4, 13844-13851.	5.2	70
83	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. Journal of the American Chemical Society, 2018, 140, 10814-10819.	6.6	70
84	A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry A, 2019, 7, 13173-13179.	5.2	68
85	Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy, 2022, 93, 106897.	8.2	68
86	Highly efficient CoMoS heterostructure derived from vertically anchored Co5Mo10 polyoxometalate for electrocatalytic overall water splitting. Chemical Engineering Journal, 2020, 394, 124849.	6.6	67
87	Flexible metal–organic frameworks for gas storage and separation. Dalton Transactions, 2022, 51, 4608-4618.	1.6	66
88	Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing <i>in situ</i> structural characterization studies. Physical Chemistry Chemical Physics, 2019, 21, 17571-17577.	1.3	65
89	A 3D porous metal–organic framework constructed of 1D zigzag and helical chains exhibiting selective anion exchange. CrystEngComm, 2010, 12, 1041-1043.	1.3	63
90	Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices. Chemical Engineering Journal, 2017, 326, 640-646.	6.6	62

#	Article	IF	CITATIONS
91	Three- and Eight-Fold Interpenetrated ThSi ₂ Metal–Organic Frameworks Fine-Tuned by the Length of Ligand. Crystal Growth and Design, 2012, 12, 2902-2907.	1.4	61
92	An Aminoâ€Functionalized Metalâ€Organic Framework, Based on a Rare Ba ₁₂ (COO) ₁₈ (NO ₃) ₂ Cluster, for Efficient C ₃ /C ₂ /C ₁ Separation and Preferential Catalytic Performance. Chemistry - A European Journal, 2018, 24, 2137-2143.	1.7	61
93	Bright-yellow to orange-red thermochromic luminescence of an AgI6–ZnII2 heterometallic aggregate. Dalton Transactions, 2013, 42, 3528.	1.6	60
94	Improving the Porosity and Catalytic Capacity of a Zinc Paddlewheel Metal-Organic Framework (MOF) through Metal-Ion Metathesis in a Single-Crystal-to-Single-Crystal Fashion. Inorganic Chemistry, 2014, 53, 10649-10653.	1.9	60
95	Cooperative Sieving and Functionalization of Zr Metal–Organic Frameworks through Insertion and Post-Modification of Auxiliary Linkers. ACS Applied Materials & Interfaces, 2019, 11, 22390-22397.	4.0	60
96	Guest-tuned proton conductivity of a porphyrinylphosphonate-based hydrogen-bonded organic framework. Journal of Materials Chemistry A, 2021, 9, 2683-2688.	5.2	60
97	A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation. Inorganic Chemistry Frontiers, 2018, 5, 2445-2449.	3.0	59
98	Recent advances in metal–organic frameworks for gas adsorption/separation. Nanoscale Advances, 2022, 4, 2077-2089.	2.2	59
99	A porous metal–organic framework (MOF) with unusual 2D→3D polycatenation based on honeycomb layers. Dalton Transactions, 2012, 41, 1928-1930.	1.6	58
100	Polymorphism in High-Crystalline-Stability Metalâ^'Organic Nanotubes. Inorganic Chemistry, 2009, 48, 4613-4615.	1.9	57
101	Accurately Regulating the Electronic Structure of Ni <i>_x</i> Se <i>_y</i> @NC Core–Shell Nanohybrids through Controllable Selenization of a Niâ€MOF for pHâ€Universal Hydrogen Evolution Reaction. Small, 2020, 16, e2004231.	5.2	56
102	Two New Zeolite-Like Supramolecular Copper Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 94-98.	1.0	54
103	Syntheses and characterizations of two novel Ln(III)–Cu(II) coordination polymers constructed by Pyridine-2,4-dicarboxylate ligand. Inorganic Chemistry Communication, 2002, 5, 366-368.	1.8	53
104	Construction of Metalâ^'Organic Frameworks with Novel {Zn ₈ O ₁₃ } SBU or Chiral Channels through <i>in Situ</i> Ligand Reaction. Crystal Growth and Design, 2010, 10, 3324-3326.	1.4	53
105	Synthesis, crystal structures, and luminescent properties of Cd(<scp>ii</scp>) coordination polymers assembled from asymmetric semi-rigid V-shaped multicarboxylate ligands. CrystEngComm, 2011, 13, 279-286.	1.3	53
106	Iron(III) Porphyrinâ€Based Porous Material as Photocatalyst for Highly Efficient and Selective Degradation of Congo Red. Macromolecular Chemistry and Physics, 2016, 217, 599-604.	1.1	53
107	Pentiptycene-Based Luminescent Cu (II) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds (NACs). Scientific Reports, 2016, 6, 20672.	1.6	51
108	Three Hydrogen-Bonded Organic Frameworks with Water-Induced Single-Crystal-to-Single-Crystal Transformation and High Proton Conductivity. Crystal Growth and Design, 2020, 20, 3456-3465.	1.4	51

#	Article	IF	CITATIONS
109	Stimuli-responsive structural changes in metal–organic frameworks. Chemical Communications, 2020, 56, 9416-9432.	2.2	50
110	Self-Assembly of a One-Dimensional Silver Complex Containing Two Kinds of Helical Chains. European Journal of Inorganic Chemistry, 2003, 2003, 38-41.	1.0	49
111	Fluorescence turn-on detection of uric acid by a water-stable metal–organic nanotube with high selectivity and sensitivity. Journal of Materials Chemistry C, 2017, 5, 601-606.	2.7	48
112	Recent progress in pristine MOF-based catalysts for electrochemical hydrogen evolution, oxygen evolution and oxygen reduction. Dalton Transactions, 2021, 50, 5732-5753.	1.6	48
113	Hydrothermal Syntheses and Structural Characterizations of Polyoxometalate (Mo/W) Compounds Consisting of M-L Cations, (M = Mn, Co, Ni, Cu, Zn; L = 3-(2-Pyridyl)pyrazole). Crystal Growth and Design, 2009, 9, 4424-4428.	1.4	47
114	Covalent organic frameworks combined with graphene oxide to fabricate membranes for H2/CO2 separation. Separation and Purification Technology, 2019, 223, 10-16.	3.9	47
115	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
116	Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 2015, 3, 21545-21552.	5.2	46
117	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 16682-16690.	7.2	45
118	A Three-Dimensional Porous Metalâ^'Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features. Inorganic Chemistry, 2009, 48, 4616-4618.	1.9	44
119	Surface wettability switching of metal-organic framework mesh for oil-water separation. Materials Letters, 2017, 189, 82-85.	1.3	44
120	Cadmium–Organic Coordination Polymers Based on N-Donor Ligands and Small Anions: Syntheses, Crystal Structures, and Photoluminescent Properties. Crystal Growth and Design, 2012, 12, 5649-5654.	1.4	43
121	Construction of copper metal–organic systems based on paddlewheel SBU through altering the substituent positions of new flexible carboxylate ligands. CrystEngComm, 2009, 11, 2516.	1.3	42
122	An Open Neodymiumâ^'Organic Framework with the NbO Structure Type Based on Binuclear SBU Involved In Situ Generated Formate. Crystal Growth and Design, 2010, 10, 1474-1477.	1.4	41
123	Synthesis and Characterization of a Series of Lanthanide Complexes Constructed from Orotic Acid. European Journal of Inorganic Chemistry, 2004, 2004, 2747-2753.	1.0	40
124	In-situ transformation into MoSe2/MoO3 heterogeneous nanostructures with enhanced electrochemical performance as anode material for sodium ion battery. Journal of Alloys and Compounds, 2018, 743, 410-418.	2.8	40
125	A Novel 3-D Self-Penetrating Topological Network Assembled by Mixed Bridging Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 2228-2231.	1.0	39
126	A new luminescent 3D metal–organic framework possessing a rare (3,5)-connected net which can be transformed from a 2D double layer. Dalton Transactions, 2009, , 763-766.	1.6	39

#	Article	IF	CITATIONS
127	Single-crystal-to-single-crystal transformation and proton conductivity of three hydrogen-bonded organic frameworks. Chemical Communications, 2020, 56, 15529-15532.	2.2	39
128	Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Research, 2020, 13, 2056-2062.	5.8	39
129	Self-Assembly of Novel Silver Polymers Based on Flexible Sulfonate Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 2144-2150.	1.0	38
130	1D zigzag chain vs. 1D helical chain: the role of the supramolecular interactions on the formation of chiral architecture. CrystEngComm, 2010, 12, 337-340.	1.3	38
131	Achieving a Rare Breathing Behavior in a Polycatenated 2 D to 3 D Net through a Pillarâ€Ligand Extension Strategy. Chemistry - A European Journal, 2014, 20, 649-652.	¹ 1.7	38
132	The lower rather than higher density charge carrier determines the NH ₃ -sensing nature and sensitivity of ambipolar organic semiconductors. Materials Chemistry Frontiers, 2018, 2, 1009-1016.	3.2	38
133	Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chinese Chemical Letters, 2018, 29, 865-868.	4.8	38
134	Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor. Electrochimica Acta, 2018, 284, 202-210.	2.6	38
135	Three 3D Lanthanide–Organic Frameworks Based on Novel Flexible Multicarboxylates: From ssa to rtl Topologies. Crystal Growth and Design, 2011, 11, 5670-5675.	1.4	37
136	Self-Assembly of 1D to 3D Cadmium Complexes: Structural Characterization and Properties. European Journal of Inorganic Chemistry, 2005, 2005, 3156-3166.	1.0	36
137	"HOT―Alkaline Hydrolysis of Amorphous MOF Microspheres to Produce Ultrastable Bimetal Hydroxide Electrode with Boosted Cycling Stability. Small, 2019, 15, e1904663.	5.2	36
138	Cation-exchange construction of ZnSe/Sb ₂ Se ₃ hollow microspheres coated by nitrogen-doped carbon with enhanced sodium ion storage capability. Nanoscale, 2020, 12, 17915-17924.	2.8	36
139	Defect-Rich Porous CoS _{1.097} /MoS ₂ Hybrid Microspheres as Electrocatalysts for pH-Universal Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 7504-7511.	2.5	35
140	A Stable Amino-Functionalized Interpenetrated Metal–Organic Framework Exhibiting Gas Selectivity and Pore-Size-Dependent Catalytic Performance. Inorganic Chemistry, 2017, 56, 13634-13637.	1.9	34
141	[Zn2(H2O)3(2,2′-bipy)2(btc)][Zn(H2O)(2,2′-bipy)(btc)] •8H2O: a novel zinc–carboxylate complex consis of independently cationic and anionic chains. Inorganic Chemistry Communication, 2003, 6, 908-911.	sting 1.9	33
142	Five MOFs with different topologies based on anthracene functionalized tetracarboxylic acid: syntheses, structures, and properties. CrystEngComm, 2014, 16, 2917-2928.	1.3	33
143	Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism. Scientific Reports, 2016, 6, 21951.	1.6	33
144	Effect of Functional Groups on the Adsorption of Light Hydrocarbons in <i>fmj</i> -type Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 832-838.	1.4	33

#	Article	IF	CITATIONS
145	Conversion of MOF into carbon-coated NiSe2 yolk-shell microspheres as advanced battery-type electrodes. Electrochimica Acta, 2020, 357, 136866.	2.6	33
146	Synthesis of Two Triarylboron-Functionalized Metal–Organic Frameworks: In Situ Decarboxylic Reaction, Structure, Photoluminescence, and Gas Adsorption Properties. Inorganic Chemistry, 2014, 53, 11206-11212.	1.9	32
147	Optimizing crystallinity and porosity of hierarchical Ni(OH) ₂ through conformal transformation of metal–organic framework template for supercapacitor applications. CrystEngComm, 2018, 20, 4313-4320.	1.3	32
148	Engineering the pore environment of metal–organic framework membranes <i>via</i> modification of the secondary building unit for improved gas separation. Journal of Materials Chemistry A, 2020, 8, 13132-13141.	5.2	32
149	Hydrothermal synthesis and structural characterization of a novel gadolinium(III) coordination polymer [Gd(Hdtpc)(OH)(H2O)]n. Inorganic Chemistry Communication, 2002, 5, 589-591.	1.8	31
150	Crystal Structure Diversities Based on 4,4′-(2,3,6,7-Tetramethoxyanthracene-9,10-diyl)dibenzoic Acid: From 2D Layer to 3D Net Framework. Crystal Growth and Design, 2012, 12, 6215-6222.	1.4	31
151	Enhancing light hydrocarbon storage and separation through introducing Lewis basic nitrogen sites within a carboxylate-decorated copper–organic framework. Materials Chemistry Frontiers, 2018, 2, 1146-1154.	3.2	31
152	Mixed Matrix Membranes Based on Metal–Organic Frameworks with Tunable Pore Size for CO2 Separation. Crystal Growth and Design, 2018, 18, 4365-4371.	1.4	31
153	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie - International Edition, 2020, 59, 6284-6288.	7.2	31
154	Tailored template engineering of MoSe ₂ /N,P-doped carbon nanospheres with sandwiched carbon and few-layered MoSe ₂ shells for stable and high-rate storage of Na ⁺ /K ⁺ -ions. Journal of Materials Chemistry A, 2021, 9, 17780-17789.	5.2	31
155	A novel 3D structure of Ag-1,4-cyclohexanedicarboxylate coordination framework. Inorganic Chemistry Communication, 2003, 6, 1426-1428.	1.8	30
156	A three-dimensional zinc(II) complex consisting of single metal centers and pentanuclear clusters bridged by 1,3,5-benzenetricarboxylate. Journal of Molecular Structure, 2004, 694, 205-210.	1.8	30
157	Reaction-condition-controlled formation of secondary-building-units in three cadmium metal–organic frameworks with an orthogonal tetrakis(tetrazolate) ligand. Journal of Molecular Structure, 2008, 890, 163-169.	1.8	30
158	Luminescent zinc and cadmium metal-organic frameworks based on tetrazole ligands. Polyhedron, 2010, 29, 296-302.	1.0	30
159	Solvent-controlled Cd(ii) metal–organic frameworks constructed from a tetrapodal silicon-based linker. RSC Advances, 2012, 2, 5543.	1.7	30
160	Monitoring thermally induced structural deformation and framework decomposition of ZIF-8 through in situ temperature dependent measurements. Physical Chemistry Chemical Physics, 2017, 19, 27178-27183.	1.3	30
161	Syntheses, structures and characteristics of four metal–organic coordination polymers based on 5-hydroxyisophthalic acid and N-containing auxiliary ligands. CrystEngComm, 2013, 15, 9578.	1.3	29
162	Investigation of the effect of pore size on gas uptake in two fsc metal–organic frameworks. Chemical Communications, 2014, 50, 4911.	2.2	29

#	Article	IF	CITATIONS
163	Stepwise Synthesis of Diverse Isomer MOFs via Metal-Ion Metathesis in a Controlled Single-Crystal-to-Single-Crystal Transformation. Crystal Growth and Design, 2017, 17, 4084-4089.	1.4	29
164	A Stable Interpenetrated Zn-MOF with Efficient Light Hydrocarbon Adsorption/Separation Performance. Crystal Growth and Design, 2020, 20, 5670-5675.	1.4	29
165	Orotato(1,10-phenanthroline)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m228-m229.	0.2	28
166	Four novel porous frameworks constructed by formate ligand. Microporous and Mesoporous Materials, 2006, 91, 215-220.	2.2	28
167	In situ confinement of free linkers within a stable MOF membrane for highly improved gas separation properties. CrystEngComm, 2017, 19, 1601-1606.	1.3	28
168	<scp>Poreâ€Environment</scp> Engineering in Multifunctional <scp>Metalâ€Organic</scp> Frameworks. Chinese Journal of Chemistry, 2020, 38, 509-524.	2.6	28
169	Solvent-induced framework-interpenetration isomers of Cu MOFs for efficient light hydrocarbon separation. Inorganic Chemistry Frontiers, 2018, 5, 2408-2412.	3.0	27
170	A multifunctional Zr-MOF for the rapid removal of Cr ₂ O ₇ ^{2â^'} , efficient gas adsorption/separation, and catalytic performance. Materials Chemistry Frontiers, 2020, 4, 1150-1157.	3.2	27
171	Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. Journal of Membrane Science, 2021, 622, 119045.	4.1	27
172	A Zn Metal–Organic Framework with High Stability and Sorption Selectivity for CO2. Inorganic Chemistry, 2015, 54, 10587-10592.	1.9	26
173	Accurate tuning of rare earth metal–organic frameworks with unprecedented topology for white-light emission. Journal of Materials Chemistry C, 2020, 8, 1374-1379.	2.7	26
174	SnS@C nanospheres coated with few-layer MoS ₂ nanosheets and nitrogen, phosphorus-codoped carbon as robust sodium ion battery anodes. Materials Chemistry Frontiers, 2020, 4, 1212-1221.	3.2	26
175	Stepwise Construction of a Ag ^I ₉ –Cu ^{II} ₄ Heterometallic Cluster Incorporating Two Unusual Vertexâ€Shared Trigonalâ€Bipyramidal Silver Polyhedra. Chemistry - an Asian Journal, 2012, 7, 1558-1561.	1.7	25
176	A non-interpenetrating lead-organic framework with large channels based on 1D tube-shaped SBUs. Chemical Communications, 2017, 53, 5694-5697.	2.2	25
177	Solvent-induced terbium metal–organic frameworks for highly selective detection of manganese(<scp>ii</scp>) ions. Dalton Transactions, 2019, 48, 2569-2573.	1.6	25
178	Crystal structures, topologies and luminescent properties of three Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) coordination networks based on naphthalene-2,6-dicarboxylic acid and different bis(imidazole) linkers. RSC Advances, 2015, 5, 16190-16198.	1.7	24
179	An Integrated Chemiluminescence Microreactor for Ultrastrong and Longâ€Lasting Light Emission. Advanced Science, 2020, 7, 2000065.	5.6	24
180	Three novel 3D metal–organic frameworks with a 1D ladder, tube or chain as assembly units. CrystEngComm, 2008, 10, 1429.	1.3	23

#	Article	IF	CITATIONS
181	A "Strongly―Self-Catenated Metal–Organic Framework with the Highest Topological Density among 3,4-Coordinated Nets. Inorganic Chemistry, 2013, 52, 10732-10734.	1.9	23
182	Metalâ^'organic framework derived porous hollow ternary sulfide as robust anode material for sodium ion batteries. Materials Today Energy, 2019, 12, 53-61.	2.5	23
183	Fluorescent selectivity for small molecules of three Zn-MOFs with different topologies based on a tetracarboxylate ligand. RSC Advances, 2015, 5, 62982-62988.	1.7	22
184	Tuning the Dimensionality of Interpenetration in a Pair of Framework-Catenation Isomers To Achieve Selective Adsorption of CO ₂ and Fluorescent Sensing of Metal Ions. Inorganic Chemistry, 2015, 54, 6084-6086.	1.9	22
185	A new approach to construct a hydrodesulfurization catalyst from a crystalline precursor: ligand-induced self-assembly, sulfidation and hydrodesulfurization. Catalysis Science and Technology, 2018, 8, 6330-6345.	2.1	22
186	N,P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Transactions, 2019, 48, 2352-2358.	1.6	22
187	Tunable Electrochemical Activity of P2–Na _{0.6} Mn _{0.7} Ni _{0.3} O _{2–<i>x</i>} F _{<i>x</i>} Microspheres as High-Rate Cathodes for High-Performance Sodium Ion Batteries. ACS Applied Materials &: Interfaces. 2021. 13. 15333-15343.	4.0	22
188	Synthesis, structure, and properties of a 3D porous Zn(<scp>ii</scp>) MOF constructed from a terpyridine-based ligand. RSC Advances, 2016, 6, 16575-16580.	1.7	21
189	Sequential Solid‣tate Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angewandte Chemie - International Edition, 2020, 59, 22372-22377.	7.2	21
190	Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 11451-11459.	1.6	21
191	Fabrication of Graphene oxide membrane with multiple "Plug-ins―for efficient dye nanofiltration. Separation and Purification Technology, 2021, 278, 119504.	3.9	21
192	Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Science China Chemistry, 2013, 56, 418-422.	4.2	20
193	A visual test paper based on Pb(<scp>ii</scp>) metal–organic nanotubes utilized as a H ₂ S sensor with high selectivity and sensitivity. Analytical Methods, 2017, 9, 3094-3098.	1.3	20
194	In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1, .	2.0	20
195	N-doped hollow carbon nanospheres as platinum anchoring material for efficient hydrogen evolution. Applied Surface Science, 2018, 459, 453-458.	3.1	20
196	ZnSxSe1-x/N-C (x = 0.24) hierarchical nanosphere with improved energy storage capability as sodium-ion battery anode. Journal of Alloys and Compounds, 2019, 771, 147-155.	2.8	20
197	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie, 2020, 132, 3868-3873.	1.6	20
198	Syntheses and crystal structures of three novel coordination polymers: [M2(bpy)(btc)(OH)]n (M=Ni,Co) and {[Co1.5(bpy)(btc)]·(H2O)2}n (bpy=2,2′-bipyridine, btc=1,3,5-benzenetricarboxylate). Journal of Molecular Structure, 2003, 657, 301-309.	1.8	19

#	Article	IF	CITATIONS
199	Crystal structures, topological analysis and luminescence properties of three coordination polymers based on a semi-rigid ligand and N-donor ligand linkers. New Journal of Chemistry, 2016, 40, 5957-5965.	1.4	19
200	A 2D porous pentiptycene-based MOF for efficient detection of Ba ²⁺ and selective adsorption of dyes from water. Inorganic Chemistry Frontiers, 2018, 5, 1314-1320.	3.0	19
201	Uncovering Structural Opportunities for Zirconium Metal–Organic Frameworks via Linker Desymmetrization. Advanced Science, 2019, 6, 1901855.	5.6	19
202	Ligand controlled structure of cadmium(II) metal-organic frameworks for fluorescence sensing of Fe3+ ion and nitroaromatic compounds. Chinese Chemical Letters, 2019, 30, 801-805.	4.8	19
203	Synthesis, crystal structures and properties of three metal–organic supramolecular architectures based on mixed organic ligands. CrystEngComm, 2008, 10, 1480.	1.3	18
204	Reaction vessel- and concentration-induced supramolecular isomerism in layered lanthanide-organic frameworks. CrystEngComm, 2011, 13, 6968.	1.3	18
205	Solvothermal synthesis, crystal structure and photoluminescence properties of four Cd(<scp>ii</scp>) coordination polymers with different topological structures. RSC Advances, 2014, 4, 53608-53616.	1.7	18
206	Rational Design and Synthesis of Hexanuclear Rare Earth the - a Metal–Organic Frameworks Platform Based on RE ₆ O ₄ (OH) ₄ (COO) ₈ Clusters. Crystal Growth and Design, 2019, 19, 1509-1513.	1.4	18
207	Embedding anion-doped Fe7S8 in N-doped carbon matrix and shell for fast and stable sodium storage. Materials Chemistry and Physics, 2021, 264, 124456.	2.0	18
208	A novel coordination polymer containing puckered rhombus grids. Dalton Transactions RSC, 2002, , 1354-1357.	2.3	17
209	Design and syntheses of two novel supermolecular frameworks through weak interactions. Journal of Molecular Structure, 2005, 738, 51-57.	1.8	17
210	Surface wettability switching of a zeolitic imidazolate framework mesh via surface ligand exchange for oil-water separation. Materials Research Bulletin, 2019, 111, 301-305.	2.7	17
211	Micelles of Mesoporous Silica with Inserted Iron Complexes as a Platform for Constructing Efficient Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 54720-54731.	4.0	17
212	A Novel Lanthanide–Transition Metal Complex Constructed by Orotic Acid. Chemistry Letters, 2001, 30, 878-879.	0.7	16
213	Self-Assembly of A Novel Sulphonate Silver(I) Complex. Chemistry Letters, 2002, 31, 198-199.	0.7	16
214	A novel interpenetrating nickel polymer with mixed ligand containing 1D chain and 2D bilayer motifs constructed by 4,4 ′ -bipy. Inorganic Chemistry Communication, 2004, 7, 683-686.	1.8	16
215	Solvent modulated assembly of two Zn metal–organic frameworks: syntheses, luminescence, and gas adsorption properties. CrystEngComm, 2015, 17, 6591-6597.	1.3	16
216	Interfacial polymerization of MOF "monomers―to fabricate flexible and thin membranes for molecular separation with ultrafast water transport. Journal of Materials Chemistry A, 2021, 9, 17528-17537.	5.2	16

#	Article	IF	CITATIONS
217	Polycrystalline Iron(III) metal-organic framework membranes for organic solvent nanofiltration with high permeance. Journal of Membrane Science, 2022, 644, 120130.	4.1	16
218	The effect of the conformation of flexible carboxylate ligands on the structures of metal–organic supramolecules. New Journal of Chemistry, 2010, 34, 2496.	1.4	15
219	Synthesis, crystal structures and properties of four topological structures based on 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate acid and bipyridine ligands. CrystEngComm, 2011, 13, 1509-1517.	1.3	15
220	<i>C</i> _{3<i>i</i>} â€Symmetric Octanuclear Cadmium Cages: Doubleâ€Anionâ€Templated Synthesis, Formation Mechanism, and Properties. Chemistry - A European Journal, 2012, 18, 16525-16530.	1.7	15
221	Fe/N-doped carbon nanofibers with Fe ₃ O ₄ /Fe ₂ C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 2296-2303.	3.0	15
222	N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochimica Acta, 2019, 325, 134925.	2.6	15
223	Fabrication of (4, 10) and (4, 12)-Connected Multifunctional Zirconium Metal–Organic Frameworks for the Targeted Adsorption of a Guest Molecule. Inorganic Chemistry, 2020, 59, 695-704.	1.9	15
224	Facile Synthesis of Dicelike Cobalt Squarate Cages through a Spontaneous Dissolution–Regrowth Process. Chemistry of Materials, 2020, 32, 6765-6771.	3.2	15
225	Yolk-shell ZnS@NC@MoS2 nanoboxes with enhanced sodium storage capability. Applied Surface Science, 2022, 574, 151715.	3.1	15
226	Few-Layered MoSe ₂ Nanosheets Confined in N,P-Doped Carbon Polyhedra for Sodium/Potassium-Ion Storage. ACS Applied Nano Materials, 2022, 5, 497-507.	2.4	15
227	A novel trinuclear cobalt complex comprising moieties derived from single and double Cââ,¬â€œS bond cleavage of diethyldithiocarbamate. Dalton Transactions RSC, 2001, , 2961-2962.	2.3	14
228	Chain structure of {[Ag(bpy)]NO3}n(bpy = 4,4′-bipyridine). Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m324-m325.	0.2	14
229	Two novel isomeric organic anion-water aggregations: 1D tape and 3D 2-fold interpenetrated diamond network. RSC Advances, 2011, 1, 1682.	1.7	14
230	Two novel isostructural Ln (III) 3D frameworks supported by 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid and in situ generated oxalate: Syntheses, characterization and photoluminescent property. Inorganic Chemistry Communication, 2012, 26, 51-55.	1.8	14
231	Anion-controlled formation of two silver lamella frameworks based on in situ ligand reaction. CrystEngComm, 2013, 15, 8877.	1.3	14
232	Syntheses, structures and characteristics of four alkaline-earth metal-organic frameworks (MOFs) based on benzene-1,2,4,5-tetracarboxylicacid and its derivative ligand. Journal of Molecular Structure, 2017, 1130, 565-572.	1.8	13
233	Efficient platinum harvesting of MOF-derived N-doped carbon through cathodic cyclic voltammetry for hydrogen evolution. Electrochimica Acta, 2019, 317, 173-181.	2.6	13
234	Optimizing Feâ€Based Metalâ€Organic Frameworks through Ligand Conformation Regulation for Efficient Dye Adsorption and C 2 H 2 /CO 2 Separation. Chemistry - A European Journal, 2021, 27, 10693-10699.	1.7	13

#	Article	IF	CITATIONS
235	Embedding ZnS in N-doped-carbon frameworks decorated with Co4S3 nanoparticles for efficient sodium storage. Applied Surface Science, 2021, 552, 149494.	3.1	13
236	Self-assembly of 2D zinc metal–organic frameworks based on mixed organic ligands. Inorganica Chimica Acta, 2009, 362, 3987-3992.	1.2	12
237	Preparation, Crystal Structure, and Properties of Five Metalâ€Organic Complexes Based on a Triangular Nonplanar Carboxylate Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 4822-4830.	1.0	12
238	A new Cu(i) coordination polymer with the CdSO4 structure type prepared via biphasic solvothermal reaction. CrystEngComm, 2010, 12, 2018.	1.3	12
239	Conformation variation of tris(2-carboxyethyl)isocyanuric acid induced by cocrystallized N-heterocyclic organic molecules. CrystEngComm, 2012, 14, 1376-1381.	1.3	12
240	Syntheses, Crystal Structures, and Properties of Two 2-Fold Interpenetrating Metal–Organic Frameworks Based on a Trigonal Rigid Ligand. Crystal Growth and Design, 2014, 14, 6521-6527.	1.4	12
241	Sandwich membranes through a two-dimensional confinement strategy for gas separation. Materials Chemistry Frontiers, 2018, 2, 1911-1919.	3.2	12
242	Facile synthesis of an antimony-doped Cu/Cu ₂ O catalyst with robust CO production in a broad range of potentials for CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2021, 9, 23234-23242.	5.2	12
243	Conversion of Amorphous MOF Microspheres into a Nickel Phosphate Battery-Type Electrode Using the "Anticollapse―Two-Step Strategy. Inorganic Chemistry, 2021, 60, 17094-17102.	1.9	12
244	Self-assembly of a novel metal–organic coordination cage (MOCC) based on a new flexible dicarboxylate ligand: synthesis, crystal structure and magnetic property. CrystEngComm, 2009, 11, 47-49.	1.3	11
245	Activity boosting of a metal-organic framework by Fe-Doping for electrocatalytic hydrogen evolution and oxygen evolution. Journal of Solid State Chemistry, 2020, 292, 121696.	1.4	11
246	Green synthesis of hierarchical carbon coupled with Fe3O4/Fe2C as an efficient catalyst for the oxygen reduction reaction. Materials Advances, 2020, 1, 2010-2018.	2.6	11
247	Metalâ€Organic Framework Materials for Light Hydrocarbon Separation. ChemPlusChem, 2021, 86, 387-395.	1.3	11
248	Tunable rare-earth metalâ^'organic frameworks for ultra-high selenite capture. Journal of Hazardous Materials, 2022, 436, 129094.	6.5	11
249	Synthesis, characterization and NLO properties of a new 3D coordination polymer assembled from p-aminobenzoic acid. Solid State Sciences, 2009, 11, 1040-1043.	1.5	10
250	Metalâ€lon Metathesis and Properties of Triarylboronâ€Functionalized Metal–Organic Frameworks. Chemistry - an Asian Journal, 2015, 10, 1535-1540.	1.7	10
251	Syntheses, Crystal Structures, and Properties of Four Metal–Organic Complexes Based on 1,4,5,6,7,7-Hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic Acid. Crystal Growth and Design, 2015, 15, 4198-4205.	1.4	10
252	Effective Binding of Neutral Dinitriles by Pillar[4]arene[1]quinone both in Solution and in Solid State. ChemistrySelect, 2018, 3, 11-14.	0.7	10

#	Article	IF	CITATIONS
253	Regulating the Orientation of Hydrogen-Bonded Organic Framework Membranes Based on Substrate Modification. Crystal Growth and Design, 2021, 21, 5292-5299.	1.4	10
254	Stereoselective Synthesis of Pillar[4]arene[1] <i>cis</i> â€diepoxyâ€ <i>p</i> â€dione and Xâ€Ray Crystal Structure of Host–Guest System. Chemistry - an Asian Journal, 2017, 12, 2354-2358.	1.7	9
255	Ultrahigh Hydrogen Uptake in an Interpenetrated Zn ₄ O-Based Metal–Organic Framework. CCS Chemistry, 2022, 4, 832-837.	4.6	9
256	Single-Atom-like B-N ₃ Sites in Ordered Macroporous Carbon for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 53892-53903.	4.0	9
257	PANa/Covalent organic framework composites with improved water uptake and proton conductivity. Chemical Communications, 2022, 58, 1131-1134.	2.2	9
258	Comparison of two water oxidation electrocatalysts by copper or zinc supermolecule complexes based on porphyrin ligand. RSC Advances, 2018, 8, 40054-40059.	1.7	8
259	Optimizing zirconium metal–organic frameworks through steric tuning for efficient removal of Cr ₂ O ₇ ^{2â^'} . Chemical Communications, 2020, 56, 10513-10516.	2.2	8
260	A Novel Open-Framework Gallium Phosphate Containing Two Different Building Units. European Journal of Inorganic Chemistry, 2003, 2003, 1303-1305.	1.0	7
261	Two birds with one stone: Self-assembly of metal–organic coordination complexes with discrete metallamacrocycle and 1D zigzag chain based on a flexible dicarboxylate ligand. Inorganic Chemistry Communication, 2013, 28, 75-80.	1.8	7
262	Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties. Journal of Solid State Chemistry, 2015, 229, 49-61.	1.4	7
263	Mild Synthesis of Pillar[4]arene[1] <i>cis</i> â€diepoxyâ€ <i>p</i> â€dione and Guestâ€Assisted Formation of a 2D Network in the Solid State. European Journal of Organic Chemistry, 2017, 2017, 6629-6632.	1.2	7
264	Four novel Co(II) metal-organic frameworks based on semi-rigid ligand and their secondary building units transformation. Journal of Molecular Structure, 2019, 1197, 87-95.	1.8	7
265	Argentophilicity induced anomalous thermal expansion behavior in a 2D silver squarate. Inorganic Chemistry Frontiers, 2021, 8, 1567-1573.	3.0	7
266	A binary all-nanoporous composite membrane constructed <i>via</i> vapor phase transformation for high-permeance gas separation. Inorganic Chemistry Frontiers, 2021, 8, 5016-5023.	3.0	7
267	Templated synthesis of a layered erbium-organic framework based on 4,6-dimethyl-5-nitroisophthalic acid (H2dna). Inorganic Chemistry Communication, 2011, 14, 948-951.	1.8	6
268	Synthesis, structure, and magnetism of three manganese-organic framework with PtS topology. Science China Chemistry, 2014, 57, 1507-1513.	4.2	6
269	High-selectivity Detection of 2,4,6-Trinitrophenol Based on Fluorescent Mg-MOF-74 in Ethanol Solution. Chemical Research in Chinese Universities, 2018, 34, 175-179.	1.3	6
270	Solution-processable (Pcâ€2)Eu(Pcâ€2)Eu[TP(OH)PP]/rGO bilayer heterojunction organic transistors with exceptional excellent ambipolar performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 12437-12446.	1.1	6

#	Article	IF	CITATIONS
271	Intrinsic volumetric negative thermal expansion in the "rigid―calcium squarate. Chemical Communications, 2021, 57, 9382-9385.	2.2	6
272	Tetrazoleâ€Functionalized Zirconium Metalâ€Organic Cages for Efficient C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₂ /CO ₂ Separations. Angewandte Chemie, 2021, 133, 17478-17483.	1.6	6
273	Constructing Porous Carbon Electrocatalysts from Cobalt Complex-Decorated Micelles of Mesoporous Silica for Oxygen Reduction/Evolution Reaction. Inorganic Chemistry, 2021, 60, 14892-14903.	1.9	6
274	μ-Terephthalato-bis[bis(1,10-phenanthroline)copper(I)] diperchlorate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, e240-e241.	0.4	5
275	catena-Poly[[silver(I)-μ-1,2-bis(4-pyridyl)ethane-κ2N:Nâ€2] trifluoromethanesulfonate]. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m416-m418.	0.2	5
276	Enabling kinetically fast activation of carbon nanotube@nickel selenide through pore-phase dual regulation in aqueous zinc battery. Science China Materials, 2022, 65, 929-938.	3.5	5
277	catena-Poly[[aqua(phenanthroline)zinc(II)]-μ-cyclohexanedicarboxylato]. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m711-m712.	0.2	4
278	An anionic potassium-organic framework for selective removal of uranyl ions. Dalton Transactions, 2021, 50, 8314-8321.	1.6	4
279	Triaqua(1,10-phenanthroline)sulfatocadmium(II). Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m230-m231.	0.2	3
280	A new photoluminescent supramolecular inorganicâ€organic hybrid zincophosphate complex pillared by carboxylate ligand through hydrogen bonding interactions. Crystal Research and Technology, 2009, 44, 331-335.	0.6	3
281	A spirobifluorene-based supramolecular polymer: Solvent-induced SCSC transformation and fluorescent sensing. Inorganic Chemistry Communication, 2020, 112, 107703.	1.8	3
282	Metal–organic framework templated Pd/CeO ₂ @N-doped carbon for low-temperature CO oxidation. Nanoscale Advances, 2020, 2, 755-762.	2.2	3
283	Crossâ€Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation. Angewandte Chemie, 2020, 132, 6343-6347.	1.6	3
284	Hydrothermal syntheses and structural characterizations of three polyoxomolybdates frameworks linked by M(HL)2 units (M = Co, Ni, Zn; L = 3-(2-pyridyl)pyrazole). Science China Chemistry, 2010, 53, 2285-2290.	4.2	2
285	Sequential Solid‧tate Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angewandte Chemie, 2020, 132, 22558-22563.	1.6	2
286	Modification of Metalâ^'Organic Frameworks for CO ₂ Capture. ACS Symposium Series, 0, , 269-308.	0.5	2
287	Synthesis, Crystal Structure and Photoluminescence of 1,2-Bis(phenylselenyl)-1,2-dicarba-closo-dodecaborane(12). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2011, 66, 65-68.	0.3	1
288	Synthesis, Structure, and Luminescent Properties of Three Coordination Compounds Based on <i>in situ</i> Generated Tetrazolate and Carboxylate Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1408-1412.	0.6	1

#	Article	IF	CITATIONS
289	Sodium Ion Storage: TiO ₂ â€Coated Interlayerâ€Expanded MoSe ₂ /Phosphorusâ€Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage (Adv. Sci. 1/2019). Advanced Science, 2019, 6, 1970005.	5.6	1
290	Frontispiece: Sequential Solidâ€State Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angewandte Chemie - International Edition, 2020, 59, .	7.2	1
291	Frontispiece: Tetrazoleâ€Functionalized Zirconium Metalâ€Organic Cages for Efficient C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₂ /CO ₂ Separations. Angewandte Chemie - International Edition, 2021, 60.	7.2	1
292	Bimetal Hydroxide Electrodes: "HOT―Alkaline Hydrolysis of Amorphous MOF Microspheres to Produce Ultrastable Bimetal Hydroxide Electrode with Boosted Cycling Stability (Small 49/2019). Small, 2019, 15, 1970267.	5.2	0
293	Metal–Organic Frameworks: Uncovering Structural Opportunities for Zirconium Metal–Organic Frameworks via Linker Desymmetrization (Adv. Sci. 23/2019). Advanced Science, 2019, 6, 1970141.	5.6	0
294	Frontispiz: Sequential Solidâ€State Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal–Organic Framework (MOF). Angewandte Chemie, 2020, 132, .	1.6	0
295	Innentitelbild: Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation (Angew. Chem. 10/2020). Angewandte Chemie, 2020, 132, 3778-3778.	1.6	0
296	Rücktitelbild: Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks (Angew. Chem. 20/2021). Angewandte Chemie, 2021, 133, 11636-11636.	1.6	0
297	Frontispiz: Tetrazoleâ€Functionalized Zirconium Metalâ€Organic Cages for Efficient C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₂ /CO ₂ Separations. Angewandte Chemie, 2021, 133, .	1.6	0
298	DESIGN OF METAL-CARBOXYLATE CAVITY-CONTAINING RECTANGULAR GRIDS WITH		0

1,2,4,5-BENZENETETRACARBOXYLIC ACID., 2002, , .