Juha Aalto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/870507/publications.pdf

Version: 2024-02-01

172207 155451 3,454 56 29 55 h-index citations g-index papers 67 67 67 4271 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.	3.9	39
2	Observing diatom diversity and community composition along environmental gradients in subarctic mountain ponds. Freshwater Biology, 2022, 67, 731-741.	1.2	4
3	Modelling spatioâ€ŧemporal soil moisture dynamics in mountain tundra. Hydrological Processes, 2022, 36, .	1.1	5
4	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
5	New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data, 2022, 14, 865-884.	3.7	68
6	Geomorphological processes shape plant community traits in the Arctic. Global Ecology and Biogeography, 2022, 31, 1381-1398.	2.7	7
7	Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. Earth-Science Reviews, 2022, 230, 104042.	4.0	42
8	Microclimate temperature variations from boreal forests to the tundra. Agricultural and Forest Meteorology, 2022, 323, 109037.	1.9	10
9	Consistent trait–environment relationships within and across tundra plant communities. Nature Ecology and Evolution, 2021, 5, 458-467.	3.4	25
10	Significant shallow–depth soil warming over Russia during the past 40Âyears. Global and Planetary Change, 2021, 197, 103394.	1.6	13
11	Dwarf Shrubs Impact Tundra Soils: Drier, Colder, and Less Organic Carbon. Ecosystems, 2021, 24, 1378-1392.	1.6	23
12	Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 2021, 27, 2279-2297.	4.2	330
13	Decadal Changes in Soil and Atmosphere Temperature Differences Linked With Environment Shifts Over Northern Eurasia. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005865.	1.0	6
14	Observed Decrease in Soil and Atmosphere Temperature Coupling in Recent Decades Over Northern Eurasia. Geophysical Research Letters, 2021, 48, e2021GL092500.	1.5	1
15	Statistical upscaling of ecosystem CO ₂ fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, 2021, 27, 4040-4059.	4.2	83
16	Environmental Controls of InSARâ€Based Periglacial Ground Dynamics in a Subâ€Arctic Landscape. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006175.	1.0	12
17	Predicting Spatial Patterns of Sindbis Virus (SINV) Infection Risk in Finland Using Vector, Host and Environmental Data. International Journal of Environmental Research and Public Health, 2021, 18, 7064.	1.2	7
18	High-latitude EU Habitats Directive species at risk due to climate change and land use. Global Ecology and Conservation, 2021, 28, e01664.	1.0	9

#	Article	IF	CITATIONS
19	Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences, 2021, 18, 5053-5083.	1.3	59
20	Cryogenic land surface processes shape vegetation biomass patterns in northern European tundra. Communications Earth & Environment, 2021, 2, .	2.6	8
21	ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	4.2	57
22	Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change, 2020, 10, 1143-1148.	8.1	52
23	Fine-grained climate velocities reveal vulnerability of protected areas to climate change. Scientific Reports, 2020, 10, 1678.	1.6	21
24	Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds?. Diversity, 2020, 12, 56.	0.7	8
25	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
26	High potential for loss of permafrost landforms in a changing climate. Environmental Research Letters, 2020, 15, 104065.	2.2	28
27	Comparing temperature data sources for use in species distribution models: From inâ€situ logging to remote sensing. Global Ecology and Biogeography, 2019, 28, 1578-1596.	2.7	104
28	Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia, 2019, 191, 601-608.	0.9	15
29	Snow cover trends in Finland over 1961–2014 based on gridded snow depth observations. International Journal of Climatology, 2019, 39, 3147-3159.	1.5	42
30	New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas. Cryosphere, 2019, 13, 693-707.	1.5	34
31	Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 2019, 25, 809-821.	1.9	38
32	Water as a resource, stress and disturbance shaping tundra vegetation. Oikos, 2019, 128, 811-822.	1.2	34
33	Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Scientific Data, 2019, 6, 190037.	2.4	51
34	Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 2018, 9, 5147.	5.8	327
35	Statistical Forecasting of Current and Future Circumâ€Arctic Ground Temperatures and Active Layer Thickness. Geophysical Research Letters, 2018, 45, 4889-4898.	1.5	83
36	Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environmental Research Letters, 2018, 13, 074003.	2.2	41

#	Article	IF	Citations
37	Revealing topoclimatic heterogeneity using meteorological station data. International Journal of Climatology, 2017, 37, 544-556.	1.5	47
38	Features of Tajikistan's past and future climate. International Journal of Climatology, 2017, 37, 4949-4961.	1.5	12
39	Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 2017, 579, 1298-1315.	3.9	142
40	Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100. Nature Communications, 2017, 8, 515.	5.8	31
41	Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water (Switzerland), 2016, 8, 119.	1.2	60
42	Worldwide Survey of Awareness and Needs Concerning Reanalyses and Respondents Views on Climate Services. Bulletin of the American Meteorological Society, 2016, 97, 1461-1473.	1.7	23
43	Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures. Annals of Applied Statistics, 2016, 10, .	0.5	46
44	New gridded daily climatology of Finland: Permutationâ€based uncertainty estimates and temporal trends in climate. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3807-3823.	1.2	111
45	The direct and indirect effects of watershed land use and soil type on stream water metal concentrations. Water Resources Research, 2016, 52, 7711-7725.	1.7	23
46	New climatic classification of Nepal. Theoretical and Applied Climatology, 2016, 125, 799-808.	1.3	140
47	Spatial modelling of stream water quality along an urban–rural gradient. Geografiska Annaler, Series A: Physical Geography, 2015, 97, 819-834.	0.6	5
48	Rainfall erosivity in Europe. Science of the Total Environment, 2015, 511, 801-814.	3.9	443
49	Reply to the comment on "Rainfall erosivity in Europe―by Auerswald et al Science of the Total Environment, 2015, 532, 853-857.	3.9	19
50	The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Climate Dynamics, 2014, 42, 237-252.	1.7	23
51	Integrating climate and local factors for geomorphological distribution models. Earth Surface Processes and Landforms, 2014, 39, 1729-1740.	1.2	26
52	Potential for extreme loss in high-latitude Earth surface processes due to climate change. Geophysical Research Letters, 2014, 41, 3914-3924.	1.5	25
53	Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theoretical and Applied Climatology, 2013, 112, 99-111.	1.3	145
54	Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments. Arctic, Antarctic, and Alpine Research, 2013, 45, 429-439.	0.4	70

#	Article	IF	CITATIONS
55	Soil moisture's underestimated role in climate change impact modelling in lowâ€energy systems. Global Change Biology, 2013, 19, 2965-2975.	4.2	110
56	High-resolution analysis of observed thermal growing season variability over northern Europe. Climate Dynamics, 0 , 1 .	1.7	9