Erik A Lundquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/870499/publications.pdf

Version: 2024-02-01

45 papers 2,001 citations

304743

22

h-index

265206 42 g-index

56 all docs

56 docs citations

56 times ranked 2022 citing authors

#	Article	IF	Citations
1	Caenorhabditis elegans ETR-1/CELF has broad effects on the muscle cell transcriptome, including genes that regulate translation and neuroblast migration. BMC Genomics, 2022, 23, 13.	2.8	1
2	The PH/MyTH4/FERM molecule MAX-1 inhibits UNC-5 activity in the regulation of VD growth cone protrusion in <i>Caenorhabditis elegans</i>	2.9	5
3	The Collagens DPY-17 and SQT-3 Direct Anterior–Posterior Migration of the Q Neuroblasts in C. elegans. Journal of Developmental Biology, 2021, 9, 7.	1.7	8
4	Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13. Journal of Cell Biology, 2021, 220, .	5. 2	13
5	The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2365-2376.	1.8	6
6	Genetic behavioral screen identifies an orphan anti-opioid system. Science, 2019, 365, 1267-1273.	12.6	43
7	RHO-1 and the Rho GEF RHGF-1 interact with UNC-6/Netrin signaling to regulate growth cone protrusion and microtubule organization in Caenorhabditis elegans. PLoS Genetics, 2019, 15, e1007960.	3.5	17
8	Novel <i>exc</i> Genes Involved in Formation of the Tubular Excretory Canals of <i>Caenorhabditis elegans</i> G3: Genes, Genomes, Genetics, 2019, 9, 1339-1353.	1.8	6
9	The Atypical Rho GTPase CHW-1 Works with SAX-3/Robo To Mediate Axon Guidance in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1885-1895.	1.8	10
10	Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in <i>Caenorhabditis elegans</i>	2.9	15
11	Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in <i>Caenorhabditis elegans /i>. Genetics, 2018, 210, 637-652.</i>	2.9	14
12	Small GTPases. WormBook, 2018, 2018, 1-65.	5. 3	105
13	The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit. Genetics, 2017, 205, 737-748.	2.9	12
14	Flavin monooxygenases regulate Caenorhabditis elegans axon guidance and growth cone protrusion with UNC-6/Netrin signaling and Rac GTPases. PLoS Genetics, 2017, 13, e1006998.	3.5	15
15	Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in <i>Caenorhabditis elegans</i> Neuronal Migration. Genetics, 2016, 203, 1747-1762.	2.9	13
16	EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans. PLoS ONE, 2016, 11, e0148658.	2.5	18
17	SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration. G3: Genes, Genomes, Genetics, 2015, 5, 1567-1574.	1.8	17
18	The UNC-6/Netrin receptors UNC-40/DCC and UNC-5 inhibit growth cone filopodial protrusion via UNC-73/Trio, Rac-like GTPases and UNC-33/CRMP. Development (Cambridge), 2014, 141, 4395-4405.	2.5	43

#	Article	IF	Citations
19	The fat-like cadherin CDH-4 acts cell-non-autonomously in anterior–posterior neuroblast migration. Developmental Biology, 2014, 392, 141-152.	2.0	24
20	Functional transcriptomic analysis of the role of MAB-5/Hox in Q neuroblast migration in Caenorhabditis elegans. BMC Genomics, 2013, 14, 304.	2.8	15
21	Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion inC. elegans. Small GTPases, 2013, 4, 208-220.	1.6	16
22	Mutationally activated Rho GTPases in cancer. Small GTPases, 2013, 4, 159-163.	1.6	74
23	The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance. PLoS Genetics, 2012, 8, e1002665.	3.5	66
24	<i>Caenorhabditis elegans</i> Flamingo Cadherin <i>fmi-1</i> Regulates GABAergic Neuronal Development. Journal of Neuroscience, 2012, 32, 4196-4211.	3. 6	37
25	Transmembrane Proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 Control Anterior–Posterior Neuroblast Migration with Left–Right Functional Asymmetry in ⟨i⟩Caenorhabditis elegans⟨/i⟩. Genetics, 2012, 192, 1373-1388.	2.9	30
26	Analysis of Rho GTPase Function in Axon Pathfinding Using Caenorhabditis elegans. Methods in Molecular Biology, 2012, 827, 339-358.	0.9	4
27	"RACK―ing up the effectors. Small GTPases, 2011, 2, 47-50.	1.6	2
28	UNC-6/netrin and its receptors UNC-5 and UNC-40/DCC modulate growth cone protrusion in vivo in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 4433-4442.	2.5	49
29	RACK-1 Acts with Rac GTPase Signaling and UNC-115/abLIM in Caenorhabditis elegans Axon Pathfinding and Cell Migration. PLoS Genetics, 2010, 6, e1001215.	3.5	36
30	Distinct roles of Rac GTPases and the UNC-73/Trio and PIX-1 Rac GTP exchange factors in neuroblast protrusion and migration in <i>C. elegans</i> Small GTPases, 2010, 1, 44-61.	1.6	29
31	The Finer Points of Filopodia. PLoS Biology, 2009, 7, e1000142.	5. 6	9
32	The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans. Neural Development, 2009, 4, 38.	2,4	61
33	The MIG-15 NIK kinase acts cell-autonomously in neuroblast polarization and migration in C. elegans. Developmental Biology, 2008, 324, 245-257.	2.0	51
34	The Arp2/3 Activators WAVE and WASP Have Distinct Genetic Interactions With Rac GTPases in <i>Caenorhabditis elegans</i>	2.9	65
35	Interactions of UNC-34 Enabled With Rac GTPases and the NIK Kinase MIG-15 in Caenorhabditis elegans Axon Pathfinding and Neuronal Migration. Genetics, 2006, 172, 893-913.	2.9	66
36	SWAN-1, a Caenorhabditis elegans WD Repeat Protein of the AN11 Family, Is a Negative Regulator of Rac GTPase Function. Genetics, 2006, 174, 1917-1932.	2.9	20

#	Article	IF	CITATION
37	Small GTPases. WormBook, 2006, , 1-18.	5.3	52
38	The Actin-Binding Protein UNC-115/abLIM Controls Formation of Lamellipodia and Filopodia and Neuronal Morphogenesis in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2005, 25, 5158-5170.	2.3	29
39	UNC-39, the C. elegans homolog of the human myotonic dystrophy-associated homeodomain protein Six5, regulates cell motility and differentiation. Developmental Biology, 2004, 272, 389-402.	2.0	25
40	Rac proteins and the control of axon development. Current Opinion in Neurobiology, 2003, 13, 384-390.	4.2	73
41	The Netrin Receptor UNC-40/DCC Stimulates Axon Attraction and Outgrowth through Enabled and, in Parallel, Rac and UNC-115/AbLIM. Neuron, 2003, 37, 53-65.	8.1	216
42	The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans. Development (Cambridge), 2003, 130, 693-704.	2.5	84
43	Three <i>C. elegans</i> Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development (Cambridge), 2001, 128, 4475-4488.	2.5	197
44	UNC-115, a Conserved Protein with Predicted LIM and Actin-Binding Domains, Mediates Axon Guidance in C. elegans. Neuron, 1998, 21, 385-392.	8.1	87
45	Analysis of osm-6, a Gene That Affects Sensory Cilium Structure and Sensory Neuron Function in Caenorhabditis elegans. Genetics, 1998, 148, 187-200.	2.9	221