Zhigang Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8704984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving a Recordâ€High Yield Rate of 120.9 for N ₂ Electrochemical Reduction over Ru Singleâ€Atom Catalysts. Advanced Materials, 2018, 30, e1803498.	21.0	736
2	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 6054-6059.	13.8	564
3	Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry, 2012, 22, 3527.	6.7	369
4	Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACS Nano, 2010, 4, 3033-3038.	14.6	258
5	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	38.1	245
6	Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Applied Catalysis B: Environmental, 2019, 240, 234-240.	20.2	224
7	The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Journal of Hazardous Materials, 2016, 304, 40-48.	12.4	195
8	Single Atoms of Iron on MoS ₂ Nanosheets for N ₂ Electroreduction into Ammonia. Angewandte Chemie - International Edition, 2020, 59, 20411-20416.	13.8	136
9	Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds. Nano Letters, 2018, 18, 3785-3791.	9.1	127
10	Bi@Sn Core–Shell Structure with Compressive Strain Boosts the Electroreduction of CO ₂ into Formic Acid. Advanced Science, 2020, 7, 1902989.	11.2	125
11	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie, 2018, 130, 6162-6167.	2.0	122
12	A Highly Efficient Metalâ€Free Electrocatalyst of Fâ€Doped Porous Carbon toward N ₂ Electroreduction. Advanced Materials, 2020, 32, e1907690.	21.0	105
13	Enhanced N ₂ Electroreduction over LaCoO ₃ by Introducing Oxygen Vacancies. ACS Catalysis, 2020, 10, 1077-1085.	11.2	98
14	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Letters, 2020, 20, 1403-1409.	9.1	89
15	Ternary Graphene–TiO ₂ –Fe ₃ O ₄ Nanocomposite as a Recollectable Photocatalyst with Enhanced Durability. European Journal of Inorganic Chemistry, 2012, 2012, 4439-4444.	2.0	83
16	Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. Journal of the American Chemical Society, 2022, 144, 9271-9279.	13.7	76
17	Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. Journal of Hazardous Materials, 2016, 314, 188-196.	12.4	73
18	A fluorescent chitosan hydrogel detection platform for the sensitive and selective determination of trace mercury(<scp>ii</scp>) in water. Journal of Materials Chemistry A, 2015, 3, 19455-19460.	10.3	66

ZHIGANG GENG

#	Article	IF	CITATIONS
19	The Realistic Domain Structure of As-Synthesized Graphene Oxide from Ultrafast Spectroscopy. Journal of the American Chemical Society, 2013, 135, 12468-12474.	13.7	64
20	<i>In-Situ</i> Surface Reconstruction of InN Nanosheets for Efficient CO ₂ Electroreduction into Formate. Nano Letters, 2020, 20, 8229-8235.	9.1	55
21	Enhanced removal of trace Cr(VI) from neutral and alkaline aqueous solution by FeCo bimetallic nanoparticles. Journal of Colloid and Interface Science, 2016, 472, 8-15.	9.4	51
22	N ₂ Electrochemical Reduction: Achieving a Recordâ€High Yield Rate of 120.9 μgNH3  mgcat.â^'1  hâ^'1 for N ₂ Electrochemical Reduction over Ru Singleâ€Ate	om2 Ca talys	sts5(ØAdv.) Tj E
23	Tuning the coordination number of Fe single atoms for the efficient reduction of CO ₂ . Green Chemistry, 2020, 22, 7529-7536.	9.0	49
24	Understanding the Effect of *CO Coverage on C–C Coupling toward CO ₂ Electroreduction. Nano Letters, 2022, 22, 3801-3808.	9.1	44
25	Adjusting Local CO Confinement in Porous-Shell Ag@Cu Catalysts for Enhancing C–C Coupling toward CO ₂ Eletroreduction. Nano Letters, 2022, 22, 2554-2560.	9.1	43
26	Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals. Nature Communications, 2022, 13, 932.	12.8	38
27	Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts. Applied Catalysis B: Environmental, 2020, 268, 118452.	20.2	35
28	Boost Selectivity of HCOO ^{â^'} Using Anchored Bi Single Atoms towards CO ₂ Reduction. ChemSusChem, 2020, 13, 6307-6311.	6.8	35
29	Electronic Tuning of SnS ₂ Nanosheets by Hydrogen Incorporation for Efficient CO ₂ Electroreduction. Nano Letters, 2021, 21, 7789-7795.	9.1	35
30	Co-based molecular catalysts for efficient CO2 reduction via regulating spin states. Applied Catalysis B: Environmental, 2021, 290, 120067.	20.2	35
31	A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO ₂ to HCOOH. Chemical Communications, 2021, 57, 1502-1505.	4.1	32
32	Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. Journal of Catalysis, 2020, 381, 427-433.	6.2	30
33	Introduction of carbon–boron atomic groups as an efficient strategy to boost formic acid production toward CO ₂ electrochemical reduction. Chemical Communications, 2018, 54, 3367-3370.	4.1	24
34	Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Science China Chemistry, 2021, 64, 1096-1102.	8.2	22
35	Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Research, 2022, 15, 10078-10083.	10.4	19
36	Single Atoms of Iron on MoS ₂ Nanosheets for N ₂ Electroreduction into Ammonia. Angewandte Chemie, 2020, 132, 20591-20596.	2.0	17

3

ZHIGANG GENG

#	Article	IF	CITATIONS
37	A versatile biocatalytic nano-platform based on Fe3O4-filled and zirconia shrunk holey carbon nanotubes. Chemical Engineering Journal, 2020, 402, 125737.	12.7	17
38	A Green and Mild Approach of Synthesis of Highly-Conductive Graphene Film by Zn Reduction of Exfoliated Graphite Oxide. Chinese Journal of Chemical Physics, 2012, 25, 494-500.	1.3	14
39	Engineering electronic structures of nanomaterials towardÂcarbon dioxide electroreduction. Current Opinion in Electrochemistry, 2019, 17, 7-15.	4.8	14
40	Bias-Adaptable CO ₂ -to-CO Conversion via Tuning the Binding of Competing Intermediates. Nano Letters, 2021, 21, 8924-8932.	9.1	13
41	Progresses on carbon dioxide electroreduction into methane. Chinese Journal of Catalysis, 2022, 43, 1634-1641.	14.0	13
42	Inductive effect as a universal concept to design efficient catalysts for CO ₂ electrochemical reduction: electronegativity difference makes a difference. Journal of Materials Chemistry A, 2021, 9, 4626-4647.	10.3	12
43	Molecular Stabilization of Subâ€Nanometer Cu Clusters for Selective CO ₂ Electromethanation. ChemSusChem, 2022, 15, .	6.8	11
44	Promoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups. Chemical Engineering Journal, 2022, 434, 134636.	12.7	9
45	Bringing light into the dark triplet space of molecular systems. Physical Chemistry Chemical Physics, 2015, 17, 13129-13136.	2.8	8
46	Molecular Modification of Single Cobalt Sites Boosts the Catalytic Activity of CO 2 Electroreduction into CO. ChemPhysChem, 2020, 21, 2051-2055.	2.1	8
47	Synthesis of Tunable Syngas on Cobaltâ€Based Catalysts towards Carbon Dioxide Reduction. ChemNanoMat, 2021, 7, 2-6.	2.8	6
48	Photo―and Electrocatalytic CO ₂ Reduction Based on Stable Leadâ€Free Perovskite Cs ₂ PdBr ₆ . Energy and Environmental Materials, 2023, 6, .	12.8	4
49	N ₂ Electroreduction: A Highly Efficient Metalâ€Free Electrocatalyst of Fâ€Doped Porous Carbon toward N ₂ Electroreduction (Adv. Mater. 24/2020). Advanced Materials, 2020, 32, 2070186.	21.0	3
50	Lysineâ€Functionalized SnO ₂ for Efficient CO ₂ Electroreduction into Formate. ChemNanoMat, 0, , .	2.8	2