

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8704652/publications.pdf Version: 2024-02-01

Υπ Χπ

#	Article	IF	CITATIONS
1	Experimental Investigation on Adiabatic Two-Phase Frictional Pressure Drop of R1234ze(E) and R134a in a Horizontal Minichannel. Journal of Thermal Science and Engineering Applications, 2022, 14, .	1.5	0
2	Flow boiling heat transfer, pressure drop and flow patterns of the environmentally friendly refrigerant R1234yf for cooling avionics. Applied Thermal Engineering, 2022, 209, 118301.	6.0	9
3	Experimental study on the heat transfer performance of a phase change material based pin-fin heat sink for heat dissipation in airborne equipment under hypergravity. Journal of Energy Storage, 2022, 52, 104742.	8.1	4
4	Experimental study on the spray cooling heat transfer performance and dimensionless correlations for ethylene glycol water solution. Applied Thermal Engineering, 2022, 214, 118824.	6.0	13
5	Thermal performance of low melting point metal-based heat sinks for high-power airborne equipment. Energy Reports, 2022, 8, 8907-8917.	5.1	2
6	Experimental Investigation on an Ultra-High Temperature Air Source Heat Pump Water Heater. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	0
7	Experimental Investigation on Flow Boiling Heat Transfer and Pressure Drop of a Low-GWP Refrigerant R1234ze(E) in a Horizontal Minichannel. Energies, 2021, 14, 5972.	3.1	2
8	Experimental investigation on melting heat transfer characteristics of a phase change material under hypergravity. International Journal of Heat and Mass Transfer, 2021, 181, 122004.	4.8	12
9	Numerical Investigation on Melting Process of a Phase Change Material Under Supergravity. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	10
10	Numerical study of flow boiling flow patterns and pressure drop of R134a in small tubes under high flight acceleration. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	7
11	Three-Dimensional Numerical Study of R134a Flow Boiling Characteristics in a Circular Tube under Overload. Journal of Thermal Science and Engineering Applications, 2019, , 1-11.	1.5	0
12	An experimental study of flow boiling frictional pressure drop of R134a in a horizontal 1.002†mm tube under hypergravity. International Journal of Heat and Mass Transfer, 2018, 118, 247-256.	4.8	13
13	Numerical simulation of flow boiling in microchannels during maneuvering flight. , 2018, , .		1
14	An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations. International Journal of Heat and Mass Transfer, 2016, 98, 150-163.	4.8	27
15	An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations. International Journal of Heat and Mass Transfer, 2016, 92, 1143-1157.	4.8	45
16	Thermal modeling of stratospheric airships. Progress in Aerospace Sciences, 2015, 75, 26-37.	12.1	51
17	An experimental study of R134a flow boiling heat transfer in a 4.07 mm tube under Earth's gravity and hypergravity. International Journal of Heat and Mass Transfer, 2015, 87, 399-408.	4.8	15
18	Assessment of "comments on â€~correlations of void fraction for two-phase refrigerant flow in pipes'― Applied Thermal Engineering, 2015, 75, 1156-1158.	6.0	1

Yu Xu

#	Article	IF	CITATIONS
19	An experimental investigation of flow boiling heat transfer and pressure drop of R134a in a horizontal 2.168 mm tube under hypergravity. Part II: Heat transfer coefficient. International Journal of Heat and Mass Transfer, 2015, 80, 597-604.	4.8	11
20	An experimental investigation of flow boiling heat transfer and pressure drop of R134a in a horizontal 2.168mm tube under hypergravity. Part I: Frictional pressure drop. International Journal of Heat and Mass Transfer, 2014, 75, 769-779.	4.8	9
21	Correlations of void fraction for two-phase refrigerant flow in pipes. Applied Thermal Engineering, 2014, 64, 242-251.	6.0	106
22	Empirical models for efficiency and mass flow rate of centrifugal compressors. International Journal of Refrigeration, 2014, 41, 190-199.	3.4	25
23	Numerical study of forced convective heat transfer around a spherical aerostat. Advances in Space Research, 2013, 52, 2199-2203.	2.6	8
24	Correlations for two-phase friction pressure drop under microgravity. International Journal of Heat and Mass Transfer, 2013, 56, 594-605.	4.8	7
25	A new correlation of two-phase frictional pressure drop for condensing flow in pipes. Nuclear Engineering and Design, 2013, 263, 87-96.	1.7	28
26	A new correlation of two-phase frictional pressure drop for evaporating flow in pipes. International Journal of Refrigeration, 2012, 35, 2039-2050.	3.4	71
27	Evaluation of frictional pressure drop correlations for two-phase flow in pipes. Nuclear Engineering and Design, 2012, 253, 86-97.	1.7	118
28	Evaluation of using two-phase frictional pressure drop correlations for normal gravity to microgravity and reduced gravity. Advances in Space Research, 2012, 49, 351-364.	2.6	19
29	Pressure drop and friction factor correlations of supercritical flow. Nuclear Engineering and Design, 2012, 242, 323-330.	1.7	54
30	Modified heat transfer equation for in-tube supercritical CO2 cooling. Applied Thermal Engineering, 2011, 31, 3036-3042.	6.0	51
31	Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis. Energy, 2011, 36, 2937-2942.	8.8	18
32	New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. Nuclear Engineering and Design, 2011, 241, 897-902.	1.7	231
33	A compact and accurate empirical model for turbine mass flow characteristics. Energy, 2010, 35, 4819-4823.	8.8	27