Xiao-Qiao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8704361/publications.pdf

Version: 2024-02-01

471061 580395 1,666 24 17 25 citations h-index g-index papers 26 26 26 2174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selfâ€Contained Monolithic Carbon Sponges for Solarâ€Driven Interfacial Water Evaporation Distillation and Electricity Generation. Advanced Energy Materials, 2018, 8, 1702149.	10.2	430
2	Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano, 2019, 13, 13176-13184.	7.3	203
3	Scalable thermoelectric fibers for multifunctional textile-electronics. Nature Communications, 2020, 11, 6006.	5.8	122
4	In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nature Communications, 2018, 9, 3438.	5.8	117
5	Somatosensory, Lightâ€Driven, Thinâ€Film Robots Capable of Integrated Perception and Motility. Advanced Materials, 2020, 32, e2000351.	11.1	106
6	Hybrid Photothermal Pyroelectric and Thermogalvanic Generator for Multisituation Low Grade Heat Harvesting. Advanced Energy Materials, 2018, 8, 1802397.	10.2	103
7	Robust Mechanochromic Elastic Oneâ€Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays. Advanced Optical Materials, 2014, 2, 652-662.	3.6	83
8	Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation. ACS Nano, 2017, 11, 10568-10574.	7.3	75
9	Tunable Janus colloidal photonic crystal supraballs with dual photonic band gaps. Journal of Materials Chemistry C, 2014, 2, 9431-9438.	2.7	71
10	A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. Advanced Functional Materials, 2021, 31, 2101825.	7.8	56
11	Allâ€Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Advanced Energy Materials, 2021, 11, 2102219.	10.2	52
12	Facile access to poly(NMA-co-VCL) hydrogels via long range laser ignited frontal polymerization. Journal of Materials Chemistry A, 2013 , 1 , 7326 .	5.2	50
13	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
14	Multifunctional Hydrogels with Temperature, Ion, and Magnetocaloric Stimuliâ€Responsive Performances. Macromolecular Rapid Communications, 2016, 37, 759-768.	2.0	36
15	Highly sensitive mechanochromic photonic gel towards fast-responsive fingerprinting. RSC Advances, 2017, 7, 33258-33262.	1.7	29
16	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	5.8	29
17	Ultrafast mechano-responsive photonic hydrogel towards multicolor displays via the pressure sensation. Materials Letters, 2017, 189, 321-324.	1.3	18
18	Spontaneous Atomic Sites Formation in Wurtzite CoO Nanorods for Robust CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	16

#	Article	IF	CITATIONS
19	Highly Crystallized Brilliant Polymeric Photonic Crystals via Repulsionâ€Induced Precipitation Assembly toward Multiresponsive Colorimetric Films. Macromolecular Materials and Engineering, 2016, 301, 1363-1373.	1.7	8
20	Increased photocatalytic activity of CuO/TiO 2 through broadband solar absorption heating under natural sunlight. Procedia Engineering, 2017, 215, 171-179.	1.2	8
21	Carbon Sponges: Selfâ€Contained Monolithic Carbon Sponges for Solarâ€Driven Interfacial Water Evaporation Distillation and Electricity Generation (Adv. Energy Mater. 16/2018). Advanced Energy Materials, 2018, 8, 1870074.	10.2	6
22	Autonomous conveyer gel driven by frontal polymerization. Journal of Polymer Science Part A, 2016, 54, 1323-1331.	2.5	3
23	Hydrogels: Robust Mechanochromic Elastic One-Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays (Advanced Optical Materials 7/2014). Advanced Optical Materials, 2014, 2, 651-651.	3.6	1
24	Dynamic thermal trapping enables cross-species smart nanoparticle swarms. Science Advances, 2021, 7, .	4.7	1