Liangli Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8704331/publications.pdf

Version: 2024-02-01

		87723	106150
108	5,196	38	65
papers	citations	h-index	g-index
108	108	108	4760
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular Cancer, 2015, 14, 48.	7.9	730
2	Reviews on Mechanisms of <i>i</i> >In Vitro <i>i</i> >Antioxidant Activity of Polysaccharides. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	374
3	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	2.9	169
4	Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydrate Polymers, 2020, 235, 115957.	5.1	151
5	Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocolloids, 2019, 94, 468-474.	5.6	117
6	Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced mice. International Journal of Biological Macromolecules, 2014, 64, 395-401.	3.6	115
7	Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids, 2020, 101, 105549.	5.6	107
8	Differentiated Caco-2Âcell models in food-intestine interaction study: Current applications and future trends. Trends in Food Science and Technology, 2021, 107, 455-465.	7.8	93
9	Toll-like receptor 4-mediated ROS signaling pathway involved in Ganoderma atrum polysaccharide-induced tumor necrosis factor-α secretion during macrophage activation. Food and Chemical Toxicology, 2014, 66, 14-22.	1.8	88
10	Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocolloids, 2019, 93, 284-292.	5.6	88
11	Macrophage Immunomodulatory Activity of a Purified Polysaccharide Isolated from <i>Ganoderma atrum</i> . Phytotherapy Research, 2013, 27, 186-191.	2.8	81
12	Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties. Food Hydrocolloids, 2017, 62, 94-101.	5.6	79
13	Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress. International Journal of Biological Macromolecules, 2019, 136, 1000-1006.	3.6	76
14	Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocolloids, 2020, 99, 105321.	5.6	75
15	Structure, function and advance application of microwave-treated polysaccharide: A review. Trends in Food Science and Technology, 2022, 123, 198-209.	7.8	69
16	Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Scientific Reports, 2017, 7, 14247.	1.6	66
17	Systematic review on modification methods of dietary fiber. Food Hydrocolloids, 2021, 119, 106872.	5.6	65
18	Chemical Composition of Five Commercial Gynostemma pentaphyllum Samples and Their Radical Scavenging, Antiproliferative, and Anti-inflammatory Properties. Journal of Agricultural and Food Chemistry, 2010, 58, 11243-11249.	2.4	64

#	Article	IF	CITATIONS
19	Effects of <i>Lactobacillus plantarum</i> NCU116 on Intestine Mucosal Immunity in Immunosuppressed Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 10914-10920.	2.4	62
20	Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocolloids, 2020, 99, 105349.	5.6	61
21	Signaling Pathway Involved in the Immunomodulatory Effect of <i>Ganoderma atrum</i> Polysaccharide in Spleen Lymphocytes. Journal of Agricultural and Food Chemistry, 2015, 63, 2734-2740.	2.4	55
22	Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. International Journal of Biological Macromolecules, 2020, 152, 766-774.	3.6	55
23	Molecular mechanism underlying chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced immunosuppressed mice. Journal of Functional Foods, 2015, 15, 52-60.	1.6	54
24	(â°')-Epigallocatechin-3-gallate Induces Apoptosis of Human Hepatoma Cells by Mitochondrial Pathways Related to Reactive Oxygen Species. Journal of Agricultural and Food Chemistry, 2009, 57, 6685-6691.	2.4	53
25	Tea Polysaccharides Inhibit Colitis-Associated Colorectal Cancer via Interleukin-6/STAT3 Pathway. Journal of Agricultural and Food Chemistry, 2018, 66, 4384-4393.	2.4	53
26	Antioxidant, \hat{l}_{\pm} -amylase and \hat{l}_{\pm} -glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber. LWT - Food Science and Technology, 2020, 132, 109943.	2.5	53
27	Immunomodulatory Activity of <i>Ganoderma atrum</i> Polysaccharide on Purified T Lymphocytes through Ca ²⁺ /CaN and Mitogen-Activated Protein Kinase Pathway Based on RNA Sequencing. Journal of Agricultural and Food Chemistry, 2017, 65, 5306-5315.	2.4	49
28	Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and TLR4/MAPK signaling pathways. International Journal of Biological Macromolecules, 2020, 160, 164-174.	3.6	49
29	Toll-like Receptor 4 Mediates the Antitumor Host Response Induced by <i>Ganoderma atrum</i> Polysaccharide. Journal of Agricultural and Food Chemistry, 2015, 63, 517-525.	2.4	48
30	<i>Lactobacillus plantarum</i> NCU116 Attenuates Cyclophosphamide-Induced Immunosuppression and Regulates Th17/Treg Cell Immune Responses in Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 1291-1297.	2.4	46
31	Polysaccharide from Ganoderma atrum induces tumor necrosis factor-α secretion via phosphoinositide 3-kinase/Akt, mitogen-activated protein kinase and nuclear factor-κB signaling pathways in RAW264.7 cells. International Immunopharmacology, 2012, 14, 362-368.	1.7	45
32	Effects of Mesona chinensis polysaccharide on the thermostability, gelling properties, and molecular forces of whey protein isolate gels. Carbohydrate Polymers, 2020, 242, 116424.	5.1	45
33	Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity in <i>in vitro</i> digestion and colonic fermentation. Food and Function, 2020, 11, 6652-6665.	2.1	45
34	Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chemistry, 2021, 339, 127879.	4.2	45
35	Preparation of a hydroxypropyl Ganoderma lucidum polysaccharide and its physicochemical properties. Food Chemistry, 2010, 122, 965-971.	4.2	44
36	Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT - Food Science and Technology, 2020, 131, 109818.	2.5	44

#	Article	IF	Citations
37	Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L.) and its antioxidant activity. International Journal of Biological Macromolecules, 2019, 138, 874-880.	3.6	43
38	Fast quantification of total volatile basic nitrogen (TVB-N) content in beef and pork by near-infrared spectroscopy: Comparison of SVR and PLS model. Meat Science, 2021, 180, 108559.	2.7	43
39	Evaluation of the protective effects of <i> Ganoderma atrum </i> polysaccharide on acrylamide-induced injury in small intestine tissue of rats. Food and Function, 2019, 10, 5863-5872.	2.1	42
40	Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Research International, 2021, 141, 110119.	2.9	42
41	Lactobacillus plantarum NCU116 attenuates cyclophosphamide-induced intestinal mucosal injury, metabolism and intestinal microbiota disorders in mice. Food and Function, 2016, 7, 1584-1592.	2.1	41
42	Ganoderma atrum polysaccharide ameliorates intestinal mucosal dysfunction associated with autophagy in immunosuppressed mice. Food and Chemical Toxicology, 2020, 138, 111244.	1.8	41
43	Antimicrobial properties, antioxidant activity and cytotoxicity of ethanol-soluble acidic components from Ganoderma atrum. Food and Chemical Toxicology, 2012, 50, 689-694.	1.8	40
44	Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. International Journal of Biological Macromolecules, 2022, 207, 81-89.	3.6	40
45	Ganoderma atrum polysaccharide attenuates oxidative stress induced by d-galactose in mouse brain. Life Sciences, 2011, 88, 713-718.	2.0	39
46	A <i>Ganoderma atrum</i> polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier. Food and Function, 2020, 11, 10690-10699.	2.1	39
47	Effects of Sulfation on the Physicochemical and Functional Properties of a Water-Insoluble Polysaccharide Preparation from <i>Ganoderma lucidum</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 3336-3341.	2.4	38
48	The Agr-Like Quorum Sensing System Is Required for Pathogenesis of Necrotic Enteritis Caused by Clostridium perfringens in Poultry. Infection and Immunity, 2017, 85, .	1.0	38
49	Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice. Food and Chemical Toxicology, 2020, 135, 111014.	1.8	38
50	Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method: Structural, physicochemical and functional properties. LWT - Food Science and Technology, 2021, 145, 111314.	2.5	37
51	<i>Ganoderma atrum</i> polysaccharide protects cardiomyocytes against anoxia/reoxygenationâ€induced oxidative stress by mitochondrial pathway. Journal of Cellular Biochemistry, 2010, 110, 191-200.	1.2	36
52	Cultured Cordyceps sinensis polysaccharides attenuate cyclophosphamide-induced intestinal barrier injury in mice. Journal of Functional Foods, 2019, 62, 103523.	1.6	36
53	The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. International Journal of Biological Macromolecules, 2021, 171, 320-330.	3.6	36
54	Sulfation modification enhances the intestinal regulation of <i>Cyclocarya paliurus</i> polysaccharides in cyclophosphamide-treated mice <i>via</i> restoring intestinal mucosal barrier function and modulating gut microbiota. Food and Function, 2021, 12, 12278-12290.	2.1	35

#	Article	IF	CITATIONS
55	Effect of <i>Lactobacillus plantarum</i> NCU116 Fermentation on <i>Asparagus officinalis</i> Polysaccharide: Characterization, Antioxidative, and Immunoregulatory Activities. Journal of Agricultural and Food Chemistry, 2018, 66, 10703-10711.	2.4	34
56	Immunomodulatory activities of sulfated Cyclocarya paliurus polysaccharides with different degrees of substitution on mouse spleen lymphocytes. Journal of Functional Foods, 2020, 64, 103706.	1.6	34
57	The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Research International, 2021, 143, 110263.	2.9	34
58	Regulatory effects of Ganoderma atrum polysaccharides on LPS-induced inflammatory macrophages model and intestinal-like Caco-2/macrophages co-culture inflammation model. Food and Chemical Toxicology, 2020, 140, 111321.	1.8	33
59	Enrichment of yogurt with carrot soluble dietary fiber prepared by three physical modified treatments: Microstructure, rheology and storage stability. Innovative Food Science and Emerging Technologies, 2022, 75, 102901.	2.7	32
60	The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber <i>in vivo</i> and <i>in vitro</i> Food and Function, 2020, 11, 748-758.	2.1	30
61	The protective effects of the <i>Ganoderma atrum</i> polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food and Function, 2021, 12, 397-407.	2.1	29
62	Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chemistry, 2022, 396, 133719.	4.2	28
63	Bound Polyphenols from Insoluble Dietary Fiber of Defatted Rice Bran by Solid-State Fermentation with <i>Trichoderma viride</i> : Profile, Activity, and Release Mechanism. Journal of Agricultural and Food Chemistry, 2021, 69, 5026-5039.	2.4	27
64	Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods, 2020, 9, 14.	1.9	26
65	Polysaccharide purified from Ganoderma atrum induced activation and maturation of murine myeloid-derived dendritic cells. Food and Chemical Toxicology, 2017, 108, 478-485.	1.8	25
66	RNA-seq based elucidation of mechanism underlying Ganoderma atrum polysaccharide induced immune activation of murine myeloid-derived dendritic cells. Journal of Functional Foods, 2019, 55, 104-116.	1.6	25
67	Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chemistry, 2021, 355, 129650.	4.2	24
68	Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-κB and PI3K-Akt signaling pathways. Food Research International, 2021, 150, 110756.	2.9	24
69	Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food Chemistry, 2020, 309, 125660.	4.2	23
70	Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chemistry, 2020, 316, 126269.	4.2	23
71	<i>Mesona chinensis</i> Benth Polysaccharides Alleviate DSSâ€Induced Ulcerative Colitis via Inhibiting of TLR4/MAPK/NFâ€ÎºB Signaling Pathways and Modulating Intestinal Microbiota. Molecular Nutrition and Food Research, 2022, 66, .	1.5	23
72	Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue. Food Research International, 2022, 157, 111489.	2.9	23

#	Article	IF	CITATIONS
73	Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-inflammatory, and Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 9309-9317.	2.4	21
74	Protective effect of Ganoderma atrum polysaccharide on acrolein-induced macrophage injury via autophagy-dependent apoptosis pathway. Food and Chemical Toxicology, 2019, 133, 110757.	1.8	21
75	Indirectly stimulation of DCs by Ganoderma atrum polysaccharide in intestinal-like Caco-2/DCs co-culture model based on RNA-seq. Journal of Functional Foods, 2020, 67, 103850.	1.6	21
76	Combined microwave and enzymatic treatment improve the release of insoluble bound phenolic compounds from the grapefruit peel insoluble dietary fiber. LWT - Food Science and Technology, 2021, 149, 111905.	2.5	21
77	Elucidation of the interaction effect between dietary fiber and bound polyphenol components on the anti-hyperglycemic activity of tea residue dietary fiber. Food and Function, 2022, 13, 2710-2728.	2.1	20
78	Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. International Journal of Biological Macromolecules, 2022, 204, 103-115.	3.6	20
79	Metabonomics combined with 16S rRNA sequencing to elucidate the hypoglycemic effect of dietary fiber from tea residues. Food Research International, 2022, 155, 111122.	2.9	20
80	Immunomodulatory effect of Ganoderma atrum polysaccharides on Th17/Treg balance. Journal of Functional Foods, 2018, 45, 215-222.	1.6	18
81	Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice. Journal of Functional Foods, 2021, 76, 104321.	1.6	18
82	Profiling of Polyphenols and Glucosinolates in Kale and Broccoli Microgreens Grown under Chamber and Windowsill Conditions by Ultrahigh-Performance Liquid Chromatography High-Resolution Mass Spectrometry. ACS Food Science & Technology, 2022, 2, 101-113.	1.3	18
83	Comparison of structural, functional and <i>in vitro</i> digestion properties of bread incorporated with grapefruit peel soluble dietary fibers prepared by three microwave-assisted modifications. Food and Function, 2020, 11, 6458-6466.	2.1	17
84	Combined RNA-seq and molecular biology technology revealed the protective effect of Cyclocarya paliurus polysaccharide on H2O2-induced oxidative damage in LO2 cells thought regulating mitochondrial function, oxidative stress and PI3K/Akt and MAPK signaling pathways. Food Research International, 2022, 155, 111080.	2.9	17
85	Dietary polysaccharide from Mung bean [<i>Vigna radiate</i> (Linn.) Wilczek] skin modulates gut microbiota and shortâ€chain fatty acids in mice. International Journal of Food Science and Technology, 2022, 57, 2581-2589.	1.3	16
86	Mechanisms of RAW264.7 macrophages immunomodulation mediated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Research International, 2022, 154, 111017.	2.9	16
87	The chemical composition of a cold-pressed milk thistle seed flour extract, and its potential health beneficial properties. Food and Function, 2019, 10, 2461-2470.	2.1	15
88	Chemical Composition of Tomato Seed Flours, and Their Radical Scavenging, Anti-Inflammatory and Gut Microbiota Modulating Properties. Molecules, 2021, 26, 1478.	1.7	15
89	The structural and functional characteristics of soluble dietary fibers modified from tomato pomace with increased content of lycopene. Food Chemistry, 2022, 382, 132333.	4.2	15
90	Optimization and identification of non-extractable polyphenols in the dietary fiber of jackfruit (Artocarpus heterophyllus Lam.) pulp released by alkaline, acid and enzymatic hydrolysis: Content, composition and antioxidant activities. LWT - Food Science and Technology, 2021, 138, 110400.	2.5	14

#	Article	IF	Citations
91	Investigation of thermal contaminants in coffee beans induced by roasting: A kinetic modeling approach. Food Chemistry, 2022, 378, 132063.	4.2	14
92	Isolation, Characterization and Antioxidant Activity of Yam Polysaccharides. Foods, 2022, 11, 800.	1.9	14
93	Dry heat treatment induced the gelatinization, rheology and gel properties changes of chestnut starch. Current Research in Food Science, 2022, 5, 28-33.	2.7	13
94	"Dialogue―between Caco-2 and DCs regulated by Ganoderma atrum polysaccharide in intestinal-like Caco-2/DCs co-culture model. Food Research International, 2021, 144, 110310.	2.9	12
95	Curcumin-Loaded pH-Sensitive Biopolymer Hydrogels: Fabrication, Characterization, and Release Properties. ACS Food Science & Technology, 2022, 2, 512-520.	1.3	12
96	Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT - Food Science and Technology, 2022, 161, 113387.	2.5	12
97	Dual modifications on the gelatinization, textural, and morphology properties of pea starch by sodium carbonate and Mesona chinensis polysaccharide. Food Hydrocolloids, 2020, 102, 105601.	5.6	11
98	Mixed solid-state fermentation for releasing bound polyphenols from insoluble dietary fiber in carrots <i>via Trichoderma viride</i> and <i>Aspergillus niger</i> . Food and Function, 2022, 13, 2044-2056.	2.1	10
99	Changes in polysaccharides structure and bioactivity during Mesona chinensis Benth storage. Current Research in Food Science, 2022, 5, 392-400.	2.7	10
100	Downregulation of steroid hormone receptor expression and activation of cell signal transduction pathways induced by a chiral nonylphenol isomer in mouse sertoli TM4 cells. Environmental Toxicology, 2017, 32, 469-476.	2.1	9
101	Soluble dietary fiber from tea residues with inhibitory effects against acrylamide and 5-hydroxymethylfurfural formation in biscuits: The role of bound polyphenols. Food Research International, 2022, 159, 111595.	2.9	9
102	Effect of nighttime UV-C irradiation of strawberry plants on phenolic content of fruit: Targeted and non-targeted metabolomic analysis. Journal of Berry Research, 2020, 10, 365-380.	0.7	8
103	Protective Effect of Ganoderma atrum Polysaccharide on Acrolein-Induced Apoptosis and Autophagic Flux in IEC-6 Cells. Foods, 2022, 11, 240.	1.9	8
104	RNA-seq based elucidation of mechanism underlying Mesona chinensis Benth polysaccharide protected H2O2-induced oxidative damage in LO2 cells. Food Research International, 2022, 157, 111383.	2.9	6
105	Acrolein Promotes Aging and Oxidative Stress via the Stress Response Factor DAF-16/FOXO in Caenorhabditis elegans. Foods, 2022, 11, 1590.	1.9	6
106	Advances in the regulation of natural polysaccharides on human health: The role of apoptosis/autophagy pathway. Critical Reviews in Food Science and Nutrition, 2023, 63, 3931-3942.	5.4	3
107	Improvement of Properties of Chestnut Starch Gels Using Dual Effects: Combination of the <i>Mesona chinensis</i> Benth Polysaccharide and Sodium Chloride. ACS Food Science & Technology, 2022, 2, 151-159.	1.3	2
108	Oxidative Stress and Apoptosis Contributed to Nonylphenol-Induced Cell Damage in Mouse NCTC Clone 1469 Cells. Journal of Chemistry, 2020, 2020, 1-14.	0.9	0