
Stephen G Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8704158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The conjugate addition of enantiomerically pure lithium amides as homochiral ammonia equivalents: scope, limitations and synthetic applications. Tetrahedron: Asymmetry, 2005, 16, 2833-2891.	1.8	296
2	Asymmetric synthesis of R-β-amino butanoic acid and S-β-tyrosine: Homochiral lithium amide equivalents for Michael additions to α,β-unsaturated esters Tetrahedron: Asymmetry, 1991, 2, 183-186.	1.8	276
3	The conjugate addition of enantiomerically pure lithium amides as chiral ammonia equivalents part II: 2005â^22011. Tetrahedron: Asymmetry, 2012, 23, 1111-1153.	1.8	108
4	4-Substituted-5,5-dimethyl oxazolidin-2-ones as effective chiral auxiliaries for enolate alkylations and Michael additions. Tetrahedron: Asymmetry, 1995, 6, 671-674.	1.8	107
5	Origins of the high stereoselectivity in the conjugate addition of lithium(α-methylbenzyl)benzylamide to t-butyl cinnamate. Tetrahedron: Asymmetry, 1994, 5, 1999-2008.	1.8	105
6	Asymmetric synthesis of anti-α-alkyl-β-amino acids. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1129-1139.	0.9	103
7	Asymmetric synthesis of N,O,O,O-tetra-acetyl d-lyxo-phytosphingosine, jaspine B (pachastrissamine), 2-epi-jaspine B, and deoxoprosophylline via lithium amide conjugate addition. Organic and Biomolecular Chemistry, 2008, 6, 1665.	1.5	97
8	Highly enantioselective organocatalysis of the Hajos–Parrish–Eder–Sauer–Wiechert reaction by the β-amino acid cispentacin. Chemical Communications, 2005, , 3802.	2.2	95
9	Asymmetric synthesis of syn-α-alkyl-β-amino acids. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1141-1147.	0.9	90
10	Asymmetric synthesis of cyclic Î ² -amino acids and cyclic amines via sequential diastereoselective conjugate addition and ring closing metathesis. Tetrahedron, 2003, 59, 3253-3265.	1.0	90
11	Asymmetric synthesis of vicinal amino alcohols: xestoaminol C, sphinganine and sphingosine. Organic and Biomolecular Chemistry, 2008, 6, 1655.	1.5	90
12	Chemical asymmetric synthesis. Nature, 1989, 342, 631-636.	13.7	89
13	An approach to identifying novel substrates of bacterial arylamine N -acetyltransferases. Bioorganic and Medicinal Chemistry, 2003, 11, 1227-1234.	1.4	84
14	Asymmetric synthesis of Sedum alkaloids via lithium amide conjugate addition. Tetrahedron, 2009, 65, 10192-10213.	1.0	84
15	Stereoselective synthesis of homochiral alpha substituted o-methoxybenzyl alcohols via nucleophilic additions to kinetically resolved homochiral tricarbonyl (η6-o-anisaldehyde)chromium(0) Tetrahedron: Asymmetry, 1991, 2, 139-156.	1.8	83
16	Arene Chromium Tricarbonyl Stabilised Benzylic Carbocations. Synlett, 1993, 1993, 323-332.	1.0	83
17	Asymmetric synthesis of (–)-(1R,2S)-cispentacin and related cis- and trans-2-amino cyclopentane- and cyclohexane-1-carboxylic acids. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1411-1415.	0.9	83
18	Asymmetric alkylations using SuperQuat auxiliaries—an investigation into the synthesis and stability of enolates derived from 5,5-disubstituted oxazolidin-2-ones. Journal of the Chemical Society Perkin Transactions 1, 1999, , 387-398.	0.9	83

#	Article	IF	CITATIONS
19	Chemoselective debenzylation of N-benzyl tertiary amines with ceric ammonium nitrate. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3765-3774.	1.3	78
20	Asymmetric syntheses of β-phenylalanine, α-methyl-β-phenylalanines and derivatives. Journal of the Chemical Society Chemical Communications, 1993, , 1153-1155.	2.0	77
21	Jaspine B (pachastrissamine) and 2-epi-jaspine B: synthesis and structural assignment. Tetrahedron: Asymmetry, 2008, 19, 1027-1047.	1.8	77
22	Homochiral lithium amides for the asymmetric synthesis of β-amino acids. Tetrahedron: Asymmetry, 2006, 17, 1793-1811.	1.8	75
23	Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorganic and Medicinal Chemistry, 2009, 17, 905-918.	1.4	75
24	An Expeditious Asymmetric Synthesis of (-)-(1R,2S) -Cispentacin. Synlett, 1993, 1993, 461-462.	1.0	74
25	The ?SuperQuat? (R)-4-phenyl-5,5-dimethyl oxazolidin-2-one as an effective chiral auxiliary for conjugate additions: Asymmetric synthesis of (?)-Aplysillamide B. Tetrahedron, 1999, 55, 3337-3354.	1.0	72
26	Asymmetric synthesis of N,O,O,O-tetra-acetyl d-lyxo-phytosphingosine, jaspine B (pachastrissamine) and its C(2)-epimer. Tetrahedron: Asymmetry, 2007, 18, 2510-2513.	1.8	72
27	Chiral propionate enolate equivalents for the stereoselective synthesis of threo- or erytho-î±,-methyl-î²-hydroxy acids. Tetrahedron Letters, 1985, 26, 2125-2128.	0.7	70
28	Second-generation compound for the modulation of utrophin in the therapy of DMD. Human Molecular Genetics, 2015, 24, 4212-4224.	1.4	69
29	Asymmetric synthesis and applications of β-amino Weinreb amides: asymmetric synthesis of (S)-coniine. Organic and Biomolecular Chemistry, 2004, 2, 1387-1394.	1.5	67
30	Evaluating β-amino acids as enantioselective organocatalysts of the Hajos–Parrish–Eder–Sauer–Wiechert reaction. Organic and Biomolecular Chemistry, 2007, 5, 3190.	1.5	67
31	Asymmetric synthesis of the N-terminal component of microginin: (2S,3R)-3-amino-2-hydroxydecanoic acid, its (2R,3R)-epimer and (3R)-3-aminodecanoic acid. Tetrahedron: Asymmetry, 1995, 6, 165-176.	1.8	66
32	A Practical Procedure for the Multigram Synthesis of the SuperQuat Chiral Auxiliaries. Synlett, 1998, 1998, 519-521.	1.0	66
33	Asymmetric Synthesis of Polyhydroxylated Pyrrolizidines via Transannular Iodoamination with Concomitant <i>N</i> -Debenzylation. Organic Letters, 2011, 13, 1594-1597.	2.4	66
34	Asymmetric synthesis of the taxol and taxotère C-13 side chains. Journal of the Chemical Society Perkin Transactions 1, 1994, , 2385-2391.	0.9	65
35	Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs). Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2527-2530.	1.0	65
36	Asymmetric synthesis of (2S,3R)-3-amino-2-hydroxydecanoic acid: The unknown amino acid component of microginin. Tetrahedron: Asymmetry, 1994, 5, 203-206.	1.8	64

#	Article	IF	CITATIONS
37	Asymmetric synthesis of β-amino-α-hydroxy acids via diastereoselective hydroxylation of homochiral β-amino enolates. Journal of the Chemical Society Perkin Transactions 1, 1994, , 2373-2384.	0.9	64
38	The asymmetric synthesis of \hat{l}^2 -lactams. Tetrahedron, 1986, 42, 5123-5137.	1.0	63
39	Highly (<i>E</i>)-Selective Wadsworthâ^'Emmons Reactions Promoted by Methylmagnesium Bromide. Organic Letters, 2008, 10, 5437-5440.	2.4	62
40	Ammonium-Directed Oxidation of Cyclic Allylic and Homoallylic Amines. Journal of Organic Chemistry, 2009, 74, 6735-6748.	1.7	61
41	An expeditious asymmetric synthesis of allophenylnorstatine. Tetrahedron, 1994, 50, 3975-3986.	1.0	60
42	An Asymmetric Synthesis of N-Protected β-Amino Aldehydes and β-Amino Ketones. Synlett, 1995, 1995, 700-702.	1.0	60
43	β-Fluoroamphetamines via the Stereoselective Synthesis of Benzylic Fluorides. Organic Letters, 2010, 12, 2936-2939.	2.4	60
44	Chiral acetate enolate equivalent for the synthesis of β-hydroxy acids and esters: X-ray crystal structure of RR,SS-(η5-C5H5)Fe(CO)(PPh3)(COCH2CH(OH)CH2CH3)]. Journal of Organometallic Chemistry, 1985, 285, 213-223.	0.8	59
45	Asymmetric synthesis of alpha substituted benzyl alcohols via the stereoselective addition of nucleophiles to homochiral tricarbonyl(η6-o-trialkylsilylbenzaldehyde)chromium(0) complexes. Journal of the Chemical Society Perkin Transactions 1, 1990, , 393-407.	0.9	59
46	lodine-mediated ring-closing iodoamination with concomitant N-debenzylation for the asymmetric synthesis of polyhydroxylated pyrrolidines. Tetrahedron: Asymmetry, 2009, 20, 758-772.	1.8	59
47	Asymmetric synthesis of (+)-negamycin. Tetrahedron: Asymmetry, 1996, 7, 1919-1922.	1.8	58
48	Kinetic resolution and parallel kinetic resolution of methyl (±)-5-alkyl-cyclopentene-1-carboxylates for the asymmetric synthesis of 5-alkyl-cispentacin derivatives. Organic and Biomolecular Chemistry, 2005, 3, 2762.	1.5	58
49	Lithium (α-methylbenzyl)allylamide: a differentially protected chiral ammonia equivalent for the asymmetric synthesis of β-amino acids and β-lactams. Journal of the Chemical Society Chemical Communications, 1995, , 1109-1110.	2.0	57
50	Ring Closing Metathesis for the Asymmetric Synthesis of (S)-Homopipecolic Acid, (S)-Homoproline and (S)-Coniine. Synlett, 2002, 2002, 1146-1148.	1.0	57
51	SuperQuat 5,5-dimethyl-4-iso-propyloxazolidin-2-one as a mimic of Evans 4-tert-butyloxazolidin-2-one. Organic and Biomolecular Chemistry, 2006, 4, 2945.	1.5	57
52	Asymmetric synthesis of β2-amino acids: 2-substituted-3-aminopropanoic acids from N-acryloyl SuperQuat derivatives. Organic and Biomolecular Chemistry, 2007, 5, 2812.	1.5	57
53	The use of lithium (α-methylbenzyl)allylamide for the asymmetric synthesis of unsaturated β-amino acid derivatives. Tetrahedron: Asymmetry, 1997, 8, 3387-3391.	1.8	56
54	Asymmetric synthesis of homochiral syn- and anti-3-phenylisoserine derivatives: a practical strategy for the synthesis of the taxol C-13 side chain. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1375.	0.9	55

#	Article	IF	CITATIONS
55	Ammonium-directed dihydroxylation of 3-aminocyclohex-1-enes: development of a metal-free dihydroxylation protocol. Organic and Biomolecular Chemistry, 2008, 6, 3751.	1.5	55
56	A chiral relay auxiliary for the synthesis of homochiral α-amino acids. Journal of the Chemical Society Perkin Transactions 1, 1998, , 2321-2330.	0.9	54
57	Conjugate Addition of Lithium <i>N</i> -Phenyl- <i>N</i> -(α-methylbenzyl)amide: Application to the Asymmetric Synthesis of (<i>R</i>)-(â^)-Angustureine. Organic Letters, 2011, 13, 2544-2547.	2.4	54
58	Asymmetric Synthesis of Allophenylnorstatine. Synlett, 1993, 1993, 731-732.	1.0	53
59	SuperQuat N-acyl-5,5-dimethyloxazolidin-2-ones for the asymmetric synthesis of α-alkyl and β-alkyl ald l²-alkyl aldehydes. Organic and Biomolecular Chemistry, 2003, 1, 2886-2899.	1.5	53
60	Conformational control in the SuperQuat chiral auxiliary 5,5-dimethyl-4-iso-propyloxazolidin-2-one induces the iso-propyl group to mimic a tert-butyl group. Chemical Communications, 2000, , 1721-1722.	2.2	52
61	Use of lithium (α-methylbenzyl)allylamide for a formal asymmetric synthesis of thienamycin. Chemical Communications, 1997, , 565-566.	2.2	51
62	Parallel synthesis of homochiral \hat{l}^2 -amino acids. Tetrahedron: Asymmetry, 2007, 18, 1554-1566.	1.8	50
63	An Oxidation and Ring Contraction Approach to the Synthesis of (±)-1-Deoxynojirimycin and (±)-1-Deoxyaltronojirimycin. Organic Letters, 2010, 12, 136-139.	2.4	50
64	Concise and highly selective asymmetric synthesis of acosamine from sorbic acid. Tetrahedron Letters, 2011, 52, 2216-2220.	0.7	50
65	Chemoselective oxidative debenzylation of tertiary N-benzyl amines. Chemical Communications, 2000, , 337-338.	2.2	49
66	Asymmetric total synthesis of sperabillins B and D via lithium amide conjugate addition. Organic and Biomolecular Chemistry, 2004, 2, 2630.	1.5	49
67	Asymmetric synthesis of β-amino-γ-substituted-γ-butyrolactones: double diastereoselective conjugate addition of homochiral lithium amides to homochiral α,β-unsaturated esters. Organic and Biomolecular Chemistry, 2007, 5, 3922.	1.5	49
68	Asymmetric Synthesis of (-)-Tetrahydrolipstatin. Synlett, 1991, 1991, 781-782.	1.0	48
69	Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorganic and Medicinal Chemistry, 2007, 15, 3579-3586.	1.4	48
70	Asymmetric synthesis of anti-(2S,3S)- and syn-(2R,3S)-diaminobutanoic acidThis is one of a number of contributions from the current members of the Dyson Perrins Laboratory to mark the end of almost 90 years of organic chemistry research in that building, as all its current academic staff move across South Parks Road to a new purpose-built laboratory Organic and Biomolecular Chemistry, 2003, 1,	1.5	47
71	3708. Ammonium-directed dihydroxylation: metal-free synthesis of the diastereoisomers of 3-aminocyclohexane-1,2-diol. Organic and Biomolecular Chemistry, 2008, 6, 3762.	1.5	47
72	Chiral relay auxiliary for the synthesis of enantiomerically pure α-amino acids. Chemical Communications, 1998, , 659-660.	2.2	45

#	Article	IF	CITATIONS
73	Cyclic β-amino acid derivatives: synthesis via lithium amide promoted tandem asymmetric conjugate addition–cyclisation reactions. Organic and Biomolecular Chemistry, 2005, 3, 1284-1301.	1.5	45
74	"Pure by NMR�. Organic Letters, 2008, 10, 5433-5436.	2.4	45
75	Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein and Cell, 2010, 1, 82-95.	4.8	45
76	Conjugate addition of lithium N-tert-butyldimethylsilyloxy-N-(α-methylbenzyl)amide: asymmetric synthesis of β2,2,3-trisubstituted amino acids. Tetrahedron, 2010, 66, 4604-4620.	1.0	45
77	Asymmetric synthesis of (4R,5R)-cytoxazone and (4R,5S)-epi-cytoxazone. Organic and Biomolecular Chemistry, 2004, 2, 1549.	1.5	44
78	The diastereoselective functionalisation of arene tricarbonylchromium complexes containing a benzylic heteroatom substituent. Journal of the Chemical Society Perkin Transactions 1, 1987, , 1805.	0.9	43
79	Polyhydroxylated pyrrolizidine alkaloids from transannular iodoaminations: application to the asymmetric syntheses of (â^')-hyacinthacine A1, (â^')-7a-epi-hyacinthacine A1, (â^')-hyacinthacine A2, and (â^')-1-epi-alexine. Organic and Biomolecular Chemistry, 2013, 11, 3187.	1.5	43
80	Stereochemical control and mechanistic aspects of the alkylation of [(η5-C5H5)Fe(L)(CO)(COCHR)]–Li+(L) Tj of the Chemical Society Chemical Communications, 1983, , 1202-1203.	ETQq0 0 0 2.0) rgBT /Overlo 42
81	Elaboration of acyl ligands: Preparation and reactivity of the anion [(η5-C5,H5)Fe(CO)(PPh3)(COCH2)]â^'. Journal of Organometallic Chemistry, 1984, 262, 49-58.	0.8	42
82	Bifunctional chiral auxiliaries 5: The synthesis of 1,3-diacylimidazolidine-2-thiones and 1,3-diacylimidazolidin-2-ones from 1,2-diamines. Tetrahedron, 1993, 49, 4419-4438.	1.0	42
83	Stereoselective synthesis of erythro-β-hydroxy carboxylic acids via iron acyl complexes. Tetrahedron Letters, 1984, 25, 2709-2712.	0.7	41
84	Preparation of methyl (1R,2S,5S)- and (1S,2R,5R)-2-amino-5-tert-butyl-cyclopentane-1-carboxylates by parallel kinetic resolution of methyl (RS)-5-tert-butyl-cyclopentene-1-carboxylate. Chemical Communications, 2003, , 2410-2411.	2.2	41
85	Asymmetric synthesis of 2-alkyl- and 2-aryl-3-aminopropionic acids (β2-amino acids) from (S)-N-acryloyl-5,5-dimethyloxazolidin-2-one SuperQuat derivatives. Chemical Communications, 2004, , 2778-2779.	2.2	41
86	A Tandem Conjugate Addition/Cyclization Protocol for the Asymmetric Synthesis of 2-Aryl-4-aminotetrahydroquinoline-3-carboxylic Acid Derivatives. Organic Letters, 2009, 11, 1959-1962.	2.4	41
87	Doubly diastereoselective conjugate addition of homochiral lithium amides to homochiral α,β-unsaturated esters containing cis- and trans-dioxolane units. Organic and Biomolecular Chemistry, 2009, 7, 761.	1.5	41
88	Syntheses of the Enantiomers of 1-Deoxynojirimycin and 1-Deoxyaltronojirimycin via Chemo- and Diastereoselective Olefinic Oxidation of Unsaturated Amines. Journal of Organic Chemistry, 2010, 75, 8133-8146.	1.7	41
89	Stereoselective preparation of β-amino-acyl iron complexes for β-lactam synthesis. Tetrahedron Letters, 1984, 25, 1743-1744.	0.7	40
90	The asymmetric synthesis of β-lactams. Stereocontrolled asymmetric tandem Michael additions and alkylations of α,β-unsaturated acyl ligands bound to the chiral auxiliary [(η5-C5H5)Fe(CO)(PPh3)]. Tetrahedron Letters, 1986, 27, 3787-3790.	0.7	40

#	Article	IF	CITATIONS
91	SuperQuat, (S)-4-benzyl-5,5-dimethyl-oxazolidin-2-one for the asymmetric synthesis of α-substituted-aldehydes. Tetrahedron: Asymmetry, 2000, 11, 3475-3479.	1.8	40
92	Parallel kinetic resolution of tert-butyl (RS)-3-alkyl–cyclopentene-1-carboxylates for the asymmetric synthesis of 3-alkyl–cispentacin derivatives. Organic and Biomolecular Chemistry, 2004, 2, 3355-3362.	1.5	40
93	Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives. Organic and Biomolecular Chemistry, 2008, 6, 2195.	1.5	40
94	Asymmetric synthesis of piperidines and octahydroindolizines using a one-pot ring-closure/N-debenzylation procedure. Tetrahedron, 2011, 67, 9975-9992.	1.0	40
95	Asymmetric Synthesis of (â^')-Martinellic Acid. Organic Letters, 2013, 15, 2050-2053.	2.4	40
96	Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family. Bioorganic and Medicinal Chemistry, 2017, 25, 2657-2665.	1.4	40
97	One-Pot Conversions of Olefins to Cyclic Carbonates and Secondary Allylic and Homoallylic Amines to Cyclic Carbamates. Journal of Organic Chemistry, 2010, 75, 7745-7756.	1.7	39
98	Asymmetric synthesis of syn- and anti-α-deuterio-β3-phenylalanine derivatives. Tetrahedron: Asymmetry, 2011, 22, 1035-1050.	1.8	39
99	Asymmetric Synthesis of the Tropane Alkaloid (+)-Pseudococaine via Ring-Closing Iodoamination. Organic Letters, 2012, 14, 4278-4281.	2.4	39
100	Ring-closing iodoamination of homoallylic amines for the synthesis ofÂpolysubstituted pyrrolidines: application to the asymmetric synthesis of (â^')-codonopsinine. Tetrahedron, 2012, 68, 4302-4319.	1.0	39
101	Asymmetric Syntheses of (â~')-1-Deoxymannojirimycin and (+)-1-Deoxyallonojirimycin via a Ring-Expansion Approach. Organic Letters, 2013, 15, 2042-2045.	2.4	39
102	Stereocontrolled tandem alkylations: Michael additions and subsequent alkylations of α,β-unsaturated acyl ligands bound to [(η5-C5H5)Fe(CO)(PPh3)]. Journal of the Chemical Society Chemical Communications, 1985, , 209-210.	2.0	38
103	Improved stereochemical control and mechanistic aspects of the alkylation of enolates derived from [(η5·C5H5)Fe(CO)(PPh3)COCH2R]. Tetrahedron Letters, 1986, 27, 623-626.	0.7	38
104	Elaboration of α-substituted benzyl alkyl ethers and sulphides by suppression of the Wittig and related rearrangements via complexation to tricarbonylchromium. Journal of the Chemical Society Perkin Transactions 1, 1986, , 1581-1589.	0.9	38
105	Enantiospecific synthesis of (+)-(R)-1-phenyl-3-methyl-1,2,4,5-tetrahydrobenz[d]azepine from (+)-(S)-N-methyl-1-phenyl ethanolamine (halostachine) via arene chromium tricarbonyl methodology. Tetrahedron Letters, 1989, 30, 3581-3588.	0.7	38
106	Orthogonal N,N-deprotection strategies of β-amino esters. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3106-3111.	1.3	38
107	The Asymmetric Synthesis ofd-Galactose via an Iterativesyn-Glycolate Aldol Strategy. Synlett, 2002, 2002, 1637-1640.	1.0	38
108	Parallel kinetic resolution of methyl (RS)-5-tris(phenylthio)methyl-cyclopent-1-ene-carboxylate for the asymmetric synthesis of (1R,2S,5S)- and (1S,2R,5R)-5-methyl-cispentacin. Tetrahedron: Asymmetry, 2008, 19, 1356-1362.	1.8	38

#	Article	lF	CITATIONS
109	Chiral acetate enolate equivalent for the synthesis of β-hydroxy acids. Journal of the Chemical Society Chemical Communications, 1984, , 956-957.	2.0	37
110	The asymmetric synthesis of (â^')-captopril utilising the iron chiral auxiliary [(η5-C5H5)Fe(CO)(PPh3)]. Tetrahedron Letters, 1987, 28, 5563-5564.	0.7	37
111	A formal synthesis of (â^')-pumiliotoxin C. Tetrahedron: Asymmetry, 1996, 7, 1595-1596.	1.8	37
112	Rules governing asymmetric synthesis with organotransition metal complexes. Tetrahedron Letters, 1984, 25, 1845-1848.	0.7	36
113	Asymmetric synthesis of (1R,8S)- and (1S,8S)-1-hydroxypyrrolizidin-3-ones via the aldol reaction between N-boc-(S)-prolinal and chiral acetate enolate equivalents derived from (S)- and (R)-[(η5-C5H5)Fe(CO)(PPh3)COCH3]. Tetrahedron: Asymmetry, 1992, 3, 123-136.	1.8	36
114	Synthesis and utility of the 3,3-dimethyl-5-substituted-2-pyrrolidinone â€~Quat' chiral auxiliary. Tetrahedron: Asymmetry, 2002, 13, 647-658.	1.8	36
115	Oxazinanones as chiral auxiliaries: synthesis and evaluation in enolate alkylations and aldol reactions. Organic and Biomolecular Chemistry, 2006, 4, 2753.	1.5	36
116	Asymmetric synthesis of (â^')-(R)-sitagliptin. Tetrahedron Letters, 2012, 53, 3052-3055.	0.7	36
117	Bifunctional chiral auxiliaries 2: the synthesis of 1,3-diacylimidazolidin-2-ones from 1,2-diamines. Tetrahedron Letters, 1991, 32, 4791-4794.	0.7	35
118	Synthesis of 5-substituted-3,3-dimethyl-2-pyrrolidinones: "quat―chiral auxiliaries. Tetrahedron Letters, 1994, 35, 2369-2372.	0.7	35
119	Asymmetric synthesis of (R)-hexane-1,5-diol and (R)-hex-3-ene-1,5-diol via a tandem asymmetric conjugate addition / stereospecific meisenheimer rearrangement protocol. Tetrahedron: Asymmetry, 1996, 7, 1001-1004.	1.8	35
120	Asymmetric syntheses of moiramide B and andrimid. Journal of the Chemical Society Perkin Transactions 1, 1998, , 2635-2644.	0.9	35
121	Asymmetric synthesis of the cis- and trans-stereoisomers of 4-aminopyrrolidine-3-carboxylic acid and 4-aminotetrahydrofuran-3-carboxylic acid. Organic and Biomolecular Chemistry, 2004, 2, 2763.	1.5	35
122	Asymmetric Michael additions of homochiral magnesium amides. Tetrahedron: Asymmetry, 1994, 5, 35-36.	1.8	34
123	A stereocontrolled approach to $1^{\hat{l}^2}$ -methylcarbapenem. Tetrahedron: Asymmetry, 1995, 6, 827-830.	1.8	34
124	Selective deprotection strategies to N-(α-methylbenzyl)-β-amino esters and derived β-lactams. Tetrahedron Letters, 1998, 39, 6045-6048.	0.7	34
125	lodine-mediated Ring Closing Alkene Iodoamination with N-Debenzylation for the Asymmetric Synthesis of Polyhydroxylated Pyrrolidines. Synlett, 2004, 2004, 0901-0903.	1.0	34
126	Asymmetric conjugate reductions with samarium diiodide: asymmetric synthesis of (2S,3R)- and (2S,3S)-[2-2H,3-2H]-leucine-(S)-phenylalanine dipeptides and (2S,3R)-[2-2H,3-2H]-phenylalanine methyl ester. Organic and Biomolecular Chemistry, 2005, 3, 1435-1447.	1.5	34

#	Article	IF	CITATIONS
127	Polysubstituted Piperidines via Iodolactonization: Application to the Asymmetric Synthesis of (+)-Pseudodistomin D. Organic Letters, 2012, 14, 1672-1675.	2.4	34
128	Trading N and O: asymmetric syntheses of β-hydroxy-α-amino acids via α-hydroxy-β-amino esters. Tetrahedron, 2013, 69, 8885-8898.	1.0	34
129	Asymmetric synthesis of (R)-hexane-1,5-diol, (R)-hex-3-ene-1,5-diol and (R)-6-methylhept-5-en-2-ol (sulcatol) employing a tandem asymmetric conjugate addition and stereospecific Meisenheimer rearrangement protocol. Journal of the Chemical Society Perkin Transactions 1, 1996, , 2467.	0.9	33
130	Asymmetric synthesis of (R)- and (S)-methyl (2-methoxy-carbonylcyclopent-2-enyl)acetate and (R)- and (S)-2-(2-hydroxy-methyl-cyclopent-2-enyl)ethanol. Tetrahedron: Asymmetry, 1997, 8, 2683-2685.	1.8	33
131	Double asymmetric induction as a mechanistic probe: conjugate addition for the asymmetric synthesis of a pseudotripeptide. Chemical Communications, 2004, , 1128.	2.2	33
132	Diastereodivergent Hydroxyfluorination of Cyclic and Acyclic Allylic Amines: Synthesis of 4-Deoxy-4-fluorophytosphingosines. Journal of Organic Chemistry, 2012, 77, 7262-7281.	1.7	33
133	Stereoselective elaboration of the acyl ligand in (η5-C5H5)Fe(CO)(PPh3)(COCH2R) via the alkylation of the anions [(η5-C5H5)Fe(CO)(PPh3)(COCHR)]Li (R = Me, Et). Journal of Organometallic Chemistry, 1983, 248, C1-C3.	0.8	32
134	Asymmetric synthesis of a highly functionalized β-amino acid: the key amino acid of sperabillins B and D. Tetrahedron Letters, 1999, 40, 9313-9316.	0.7	32
135	Syntheses of derivatives of L-daunosamine and its C-3 epimer employing as the key step the asymmetric conjugate addition of a homochiral lithium amide to tert-butyl (E,E )-hexa-2,4-dienoate. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3089-3104.	0.9	32
136	Diastereoselective Simmons–Smith cyclopropanations of allylic amines and carbamates. Chemical Communications, 2007, , 4029.	2.2	32
137	Asymmetric synthesis of tetrahydrolipstatin and valilactone. Tetrahedron: Asymmetry, 2008, 19, 2620-2631.	1.8	32
138	Parallel kinetic resolution of tert-butyl (RS)-6-alkyl-cyclohex-1-ene-carboxylates for the asymmetric synthesis of 6-alkyl-substituted cishexacin derivatives. Tetrahedron: Asymmetry, 2008, 19, 2870-2881.	1.8	32
139	Highly Diastereoselective and Stereodivergent Dihydroxylations of Acyclic Allylic Amines: Application to the Asymmetric Synthesis of 3,6-Dideoxy-3-amino- <scp>l</scp> -talose. Organic Letters, 2011, 13, 2606-2609.	2.4	32
140	Rearrangements and racemisation during the synthesis of l-serine derived oxazolidin-2-ones. Tetrahedron, 2002, 58, 9387-9401.	1.0	31
141	Kinetic resolution of tert-butyl (RS)-3-alkylcyclopentene-1-carboxylates for the synthesis of homochiral 3-alkyl-cispentacin and 3-alkyl-transpentacin derivatives. Organic and Biomolecular Chemistry, 2004, 2, 3337.	1.5	31
142	Ammonium-Directed Olefinic Epoxidation: Kinetic and Mechanistic Insights. Journal of Organic Chemistry, 2012, 77, 7241-7261.	1.7	31
143	Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angewandte Chemie - International Edition, 2020, 59, 2420-2428.	7.2	31
144	Preparation and reactivity of the anion [(η5-C5H5)Fe(CO)(PPh3)(COCH2)]Li. Journal of the Chemical Society Chemical Communications, 1982, , 1303-1304.	2.0	30

#	Article	IF	CITATIONS
145	Asymmetric Synthesis of Homochiral β-Lactones via the Iron Chiral Auxiliary [(η5-C5H5)Fe(CO)(PPh3)]. Synlett, 1991, 1991, 779-780.	1.0	30
146	Polymer supported oxazolidin-2-ones derived from l-serine—a cautionary tale. Tetrahedron Letters, 2000, 41, 7577-7581.	0.7	30
147	Chemo- and diastereoselective cyclopropanation of allylic amines and carbamates. Tetrahedron, 2010, 66, 8420-8440.	1.0	30
148	A systematic study of the solid state and solution phase conformational preferences of β-peptides derived from transpentacin. Tetrahedron: Asymmetry, 2010, 21, 1797-1815.	1.8	30
149	Asymmetric synthesis of (â^')-codonopsinine. Tetrahedron Letters, 2011, 52, 6477-6480.	0.7	30
150	Asymmetric syntheses of (â^')-isoretronecanol and (â^')-trachelantamidine. Tetrahedron, 2014, 70, 204-211.	1.0	30
151	Chiral propionate enolate equivalent for stereoselective additions to symmetrical ketones. Tetrahedron Letters, 1985, 26, 2129-2130.	0.7	29
152	The Asymmetric Synthesis of (2R,3R)- and (2R,3S)-3-Methyl-aspartates via an Enantiodiscrimination Strategy. Synlett, 2001, 2001, 0781-0784.	1.0	29
153	Asymmetric synthesis of (1R,2S,3R)-3-methylcispentacin and (1S,2S,3R)-3-methyltranspentacin by kinetic resolution of tert-butyl (±)-3-methylcyclopentene-1-carboxylate. Organic and Biomolecular Chemistry, 2003, 1, 3698-3707.	1.5	29
154	Asymmetric synthesis of 2,4-disubstituted butyrolactones using the iron chiral auxiliary [(i-5-C5H5)Fe(CO)(PPh3)]. Tetrahedron, 1990, 46, 4847-4856.	1.0	28
155	Bifunctional chiral auxiliaries 1: the aldol reaction between dialkylboron enolates of 1,3-dipropionyl-trans-4,5-tetramethyleneimidazolidin-2-one and aldehydes. Tetrahedron Letters, 1991, 32, 4787-4790.	0.7	28
156	Stereoselective conjugate addition of organocuprates to a dehydroalanine derived diketopiperazine. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3657-3658.	0.9	28
157	N-acyl-5,5-dimethyl-oxazolidin-2-ones as latent aldehyde equivalents. Tetrahedron Letters, 1999, 40, 6677-6680.	0.7	28
158	Asymmetric synthesis of β-pyridyl-β-amino acid derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1858-1868.	1.3	28
159	Double diastereoselective SuperQuat glycolate aldol reactions: Application to the asymmetric synthesis of polyfunctionalised lactones. Organic and Biomolecular Chemistry, 2004, 2, 3385.	1.5	28
160	Stereoselective functionalisation of SuperQuat enamides: asymmetric synthesis of homochiral 1,2-diols and α-benzyloxy carbonyl compounds. Tetrahedron, 2008, 64, 9320-9344.	1.0	28
161	Highly Diastereoselective <i>anti</i> -Dihydroxylation of 3- <i>N</i> , <i>N</i> -Dibenzylaminocyclohex-1-ene <i>N</i> -Oxide. Organic Letters, 2009, 11, 1333-1336.	2.4	28
162	Asymmetric syntheses of (+)-negamycin, (+)-3-epi-negamycin and sperabillin C via lithium amide conjugate addition. Tetrahedron, 2011, 67, 216-227.	1.0	28

#	Article	IF	CITATIONS
163	Asymmetric synthesis of (â^')-(1R,7aS)-absouline. Tetrahedron, 2013, 69, 1369-1377.	1.0	28

Stereoselective additions to the alkoxycarbene cations [(.eta.5-C5H5)Fe(CO)(PPh3)(:CROMe)]+ (R = H,) Tj ETQq0 $\frac{0.0}{27}$ rgBT /Qyerlock 10

165	Tricarbonylchromium(0) promoted stereoselective cyclisations of the N-3,4-dimethoxyphenethyl derivatives of the 1-phenyl ethanolamines halostachine, ephedrine and pseudoephedrine to 1-phenyl-N-methyl-7,8-dimethoxy-1,2,4,5-tetrahydrobenzazepines. Tetrahedron: Asymmetry, 1990, 1, 33-56.	1.8	27
166	Conjugate addition to (α,β)(α′,β′)-diendioate esters by lithium (α-methylbenzyl)benzylamide: tandem addition–cyclisation versus double addition. Tetrahedron: Asymmetry, 1999, 10, 1637-1641.	1.8	27
167	Asymmetric synthesis of (1R,2S,3R)-Î ³ -methyl-cis-pentacin by a kinetic resolution protocol. Chemical Communications, 2002, , 2910-2911.	2.2	27
168	N-α-Benzyloxyacetyl derivatives of (S)-4-benzyl-5,5-dimethyloxazolidin-2-one for the asymmetric synthesis of differentially protected α,β-dihydroxyaldehydes. Tetrahedron, 2004, 60, 7553-7577.	1.0	27
169	Asymmetric synthesis of the stereoisomers of 2-amino-5-carboxymethyl-cyclopentane-1-carboxylate. Organic and Biomolecular Chemistry, 2004, 2, 364-372.	1.5	27
170	Enantiodiscrimination of racemic electrophiles by diketopiperazine enolates: asymmetric synthesis of methyl 2-amino-3-aryl-butanoates and 3-methyl-aspartates. Tetrahedron, 2006, 62, 7911-7925.	1.0	27
171	Diastereoselective synthesis of quaternary α-amino acids from diketopiperazine templates. Organic and Biomolecular Chemistry, 2007, 5, 2138-2147.	1.5	27
172	Piperidinols That Show Anti-Tubercular Activity as Inhibitors of Arylamine N-Acetyltransferase: An Essential Enzyme for Mycobacterial Survival Inside Macrophages. PLoS ONE, 2012, 7, e52790.	1.1	27
173	Asymmetric Syntheses of APTO and AETD: the β-Amino Acid Fragments within Microsclerodermins C, D, and E. Journal of Organic Chemistry, 2013, 78, 2500-2510.	1.7	27
174	Design, synthesis and structure–activity relationships of 3,5-diaryl-1H-pyrazoles as inhibitors of arylamine N-acetyltransferase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2759-2764.	1.0	27
175	Enantiospecific synthesis of (+)-(R)-6,7-dimethoxy-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline from (+)-(S)-2-methylamino-1-phenylethanol (halostachine). Journal of the Chemical Society Perkin Transactions 1, 1989, , 2223.	0.9	26
176	Chiral relay effects influence the facial selectivity of N-alkylated 5-phenylmorpholin-2-one enolates. Tetrahedron: Asymmetry, 1998, 9, 1483-1487.	1.8	26
177	The conformational analysis of phosphine ligands in organometallic complexes. Part 1. Triphenylphosphine coordinated to an achiral metal centre 1. Journal of the Chemical Society Perkin Transactions II, 1998, , 1683-1690.	0.9	26
178	Asymmetric synthesis of β-haloaryl β-amino acid derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3112-3121.	1.3	26
179	Parallel Kinetic Resolution of Acyclic γ-Amino-α,β-unsaturated Esters: Application to the Asymmetric Synthesis of 4-Aminopyrrolidin-2-ones. Organic Letters, 2012, 14, 218-221.	2.4	26
180	Hydrogen bond directed epoxidation: diastereoselective olefinic oxidation of allylic alcohols and amines. Organic and Biomolecular Chemistry, 2014, 12, 4544.	1.5	26

#	Article	IF	CITATIONS
181	A conformational analysis of transition metal $\hat{I} \cdot 1$ -acyl complexes: steric interactions and stereoelectronic effects. Chemical Society Reviews, 1988, 17, 147-179.	18.7	25
182	A Succinct Asymmetric Synthesis of (2S,3R)-2-Methyl-3-aminopentanoic Acid Hydrochloride. Synlett, 1994, 117-118.	1.0	25
183	A formal total asymmetric synthesis of (+)-thienamycin. Tetrahedron: Asymmetry, 1995, 6, 2507-2510.	1.8	25
184	Asymmetric Synthesis of (2S,3S)- and (2R,3S)-2,3-Diaminobutanoic Acids, Non-Protein Amino-Acid Diastereomers found in a number of Peptide Antibiotics. Synlett, 1996, 1996, 621-622.	1.0	25
185	Asymmetric synthesis of α-amino carbonyl derivatives using lithium (R)-N-benzyl-N-α-methylbenzylamide. Tetrahedron: Asymmetry, 2002, 13, 1555-1565.	1.8	25
186	Asymmetric synthesis of homochiral differentially protected bis-β-amino acid scaffolds. Tetrahedron, 2002, 58, 4629-4642.	1.0	25
187	Total asymmetric synthesis of sperabillins B and DElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b305740b/. Chemical Communications, 2003, , 2132.	2.2	25
188	A SuperQuat glycolate aldol approach to the asymmetric synthesis of hexose monosaccharides. Organic and Biomolecular Chemistry, 2005, 3, 348.	1.5	25
189	Doubly diastereoselective [3,3]-sigmatropic aza-Claisen rearrangements. Organic and Biomolecular Chemistry, 2009, 7, 2604.	1.5	25
190	Ring-Opening Hydrofluorination of 2,3- and 3,4-Epoxy Amines by HBF ₄ ·OEt ₂ : Application to the Asymmetric Synthesis of (<i>S</i> , <i>S</i>)-3-Deoxy-3-fluorosafingol. Journal of Organic Chemistry, 2011, 76, 4617-4627.	1.7	25
191	Direct asymmetric syntheses of chiral aldehydes and ketones via N-acyl chiral auxiliary derivatives including chiral Weinreb amide equivalents. Chemical Communications, 2013, 49, 8586.	2.2	25
192	Stemistry: The Control of Stem Cells in Situ Using Chemistry. Journal of Medicinal Chemistry, 2015, 58, 2863-2894.	2.9	25
193	The Hancock Alkaloids (â^')-Cuspareine, (â^')-Galipinine, (â^')-Galipeine, and (â^')-Angustureine: Asymmetric Syntheses and Corrected ¹ H and ¹³ C NMR Data. Journal of Natural Products, 2018, 81, 2731-2742.	1.5	25
194	Synthesis and Characterisation of E and Z α,β-Unsaturated Acyl Complexes [(η5-C5H5)Fe(CO)(PPh3)(COCH=CHR)] (R=H, Me, Et, -Bu, -Bu, Ph, vinyl,2-furyl). Tetrahedron, 1986, 42, 175-188.	1.0	24
195	Asymmetric synthesis of substituted 1-aminocyclopropane-1-carboxylic acids via diketopiperazine methodology. Organic and Biomolecular Chemistry, 2003, 1, 2531-2542.	1.5	24
196	Oxidative Functionalisation of SuperQuat Enamides: Asymmetric Synthesis of Homochiral 1,2 Diols. Synlett, 2003, 2003, 1659-1662.	1.0	24
197	Asymmetric synthesis of 3,4-anti- and 3,4-syn-substituted aminopyrrolidines via lithium amide conjugate addition. Organic and Biomolecular Chemistry, 2007, 5, 1961.	1.5	24
198	A practical and scaleable total synthesis of the jaborandi alkaloid (+)-pilocarpine. Tetrahedron, 2009, 65, 8283-8296.	1.0	24

#	Article	IF	CITATIONS
199	The stereodivergent aziridination of allylic carbamates, amides and sulfonamides. Tetrahedron, 2010, 66, 6806-6813.	1.0	24
200	Asymmetric Synthesis of Piperidines and Octahydroindolizines. Synlett, 2010, 2010, 567-570.	1.0	24
201	Asymmetric Syntheses of (+)-Preussin B, the C(2)-Epimer of (â^')-Preussin B, and 3-Deoxy-(+)-preussin B. Journal of Organic Chemistry, 2016, 81, 4907-4922.	1.7	24
202	Chiral discrimination in the reactions of the enolate E-[(η5-C5H5)Fe(CO)(PPh3)COCHMe]â^'Li+ with and but-2-ene oxides in the presence of BF3·OEt3. Tetrahedron Letters, 1985, 26, 4815-4818.	0.7	23
203	Asymmetric synthesis of β-amino acid scaffolds. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2931-2938.	1.3	23
204	Asymmetric and enantiospecific syntheses of 1-hydroxymethyl pyrrolizidine alkaloids. Tetrahedron: Asymmetry, 2014, 25, 387-403.	1.8	23
205	The asymmetric syntheses of pyrrolizidines, indolizidines and quinolizidines via two sequential tandem ring-closure/N-debenzylation processes. Organic and Biomolecular Chemistry, 2014, 12, 9223-9235.	1.5	23
206	The conjugate addition of enantiomerically pure lithium amides as chiral ammonia equivalents part III: 2012–2017. Tetrahedron: Asymmetry, 2017, 28, 1842-1868.	1.8	23
207	SuperQuat chiral auxiliaries: design, synthesis, and utility. Organic and Biomolecular Chemistry, 2019, 17, 1322-1335.	1.5	23
208	Stereochemical studies on marine cyclic peroxides : an unequivocal alignment of absolute stereochemistry by asymmetric synthesis. Tetrahedron, 1988, 44, 1637-1650.	1.0	22
209	Assignment of the absolute configuration to winterstein's acid, R-3-dimethylamino-3-phenyl propionic acid, by the asymmetric synthesis of homochiral (S)-(+)-ethyl 3-dimetylamino-3-phenyl propionate. Tetrahedron: Asymmetry, 1990, 1, 279-280.	1.8	22
210	The conformational analysis of phosphine ligands in organometallic complexes. Part 2. Triphenylphosphine coordinated to achiral and prochiral octahedral metal centres 1. Journal of the Chemical Society Perkin Transactions II, 1999, , 465-474.	0.9	22
211	Asymmetric synthesis of homochiral Baylis–Hillman products employing (R)-N-methyl-N-α-methylbenzyl amide. Tetrahedron: Asymmetry, 2000, 11, 2437-2441.	1.8	22
212	Asymmetric three- and [2 + 1]-component conjugate addition reactions for the stereoselective synthesis of polysubstituted piperidinones. Organic and Biomolecular Chemistry, 2007, 5, 1405.	1.5	22
213	The Chiral Auxiliary <i>N</i> -1-(1′-Naphthyl)ethyl- <i>O</i> - <i>tert</i> -butylhydroxylamine: A Chiral Weinreb Amide Equivalent. Organic Letters, 2009, 11, 3254-3257.	2.4	22
214	On the Origins of Diastereoselectivity in the Alkylation of Enolates Derived from <i>N</i> -1-(1â€2-Naphthyl)ethyl- <i>O</i> - <i>tert</i> -butylhydroxamates: Chiral Weinreb Amide Equivalents. Journal of Organic Chemistry, 2010, 75, 1214-1227.	1.7	22
215	Double asymmetric induction as a mechanistic probe: the doubly diastereoselective conjugate addition of enantiopure lithium amides to enantiopure $\hat{1}\pm$, $\hat{1}^2$ -unsaturated esters and enantiopure $\hat{1}\pm$, $\hat{1}^2$ -unsaturated hydroxamates. Tetrahedron, 2011, 67, 6382-6403.	1.0	22
216	A systematic study of the solid state and solution phase conformational preferences of β-peptides derived from C(3)-alkyl substituted transpentacin derivatives. Tetrahedron: Asymmetry, 2011, 22, 69-100.	1.8	22

#	Article	IF	CITATIONS
217	Trading N and O. Part 2: Exploiting aziridinium intermediates forÂtheÂsynthesis of β-hydroxy-α-amino acids. Tetrahedron, 2014, 70, 5849-5862.	1.0	22
218	Asymmetric Synthesis of Substituted <i>anti</i> -β-Fluorophenylalanines. Organic Letters, 2015, 17, 2254-2257.	2.4	22
219	Conformational analysis of the iron acetyl complex [(η5-C5H5)Fe(CO)(PPh3)COCH3]. Tetrahedron Letters, 1986, 27, 619-622.	0.7	21
220	Chiral recognition in the reaction of the enolate derived from [(η5-C5H5)Fe(CO)(PPh3)COCH2OCH2Ph] with cis- and trans-2,3-epoxybutane: The stereoselective synthesis of cis and trans-βγ-disubstituted-γ-lactones. Tetrahedron Letters, 1989, 30, 587-590.	0.7	21
221	Chiral recognition in the SN2 reaction of t-butyl 2-bromopropionate with the enolate derived from [(γ5â^²C5H5)Fe(CO)(PPh3)COCH3]. Tetrahedron Letters, 1990, 31, 4067-4068.	0.7	21
222	Asymmetric synthesis of the enantiomers of the diarylcarbinol (1R)- and (1S)-1-(1-hydroxyphenylmethyl)-2-hydroxybenzene. Journal of the Chemical Society Chemical Communications, 1995, , 251.	2.0	21
223	Asymmetric synthesis of (R)-sulcatol. Tetrahedron: Asymmetry, 1996, 7, 1005-1006.	1.8	21
224	Chiral glycine cation equivalents: N-acyliminium species derived from diketopiperazines. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2442-2448.	1.3	21
225	Diastereoselective conjugate reduction with samarium diiodide: asymmetric synthesis of methyl (2S,3R)-N-acetyl-2-amino-2,3-dideuterio-3-phenylpropionate. Chemical Communications, 2004, , 2502-2503.	2.2	21
226	On the origins of diastereoselectivity in the alkylation of diketopiperazine enolates. New Journal of Chemistry, 2007, 31, 486.	1.4	21
227	Doubly diastereoselective conjugate addition of enantiopure lithium amides to enantiopure N-enoyl oxazolidin-2-ones: a mechanistic probe. Tetrahedron: Asymmetry, 2010, 21, 1635-1648.	1.8	21
228	Asymmetric Syntheses of Methyl N,O-Diacetyl-d-3-epi-daunosaminide and Methyl N,O-Diacetyl-d-ristosaminide. Journal of Organic Chemistry, 2013, 78, 12397-12408.	1.7	21
229	Structural Revision of the Hancock Alkaloid (â^')-Galipeine. Journal of Organic Chemistry, 2017, 82, 10673-10679.	1.7	21
230	Chiral recognition in the reaction of the enolate derived from [(η5-C5H5)Fe(CO)(PPh3)COCH2OCH2Ph] with 1-phenylethyl bromide. Journal of the Chemical Society Chemical Communications, 1990, , 797-799.	2.0	20
231	Regioselective ortho substitution of diphenyl sulfoxide chromium tricarbonyl: complementary stereoselectivities for the mono- and di-anions. Journal of the Chemical Society Chemical Communications, 1995, , 817.	2.0	20
232	N-Acyl-5,5-dimethyloxazolidin-2-ones as latent aldehyde equivalents. Organic and Biomolecular Chemistry, 2003, 1, 2001-2010.	1.5	20
233	Lithium amide conjugate addition for the asymmetric synthesis of 3-aminopyrrolidines. Chemical Communications, 2006, , 2664.	2.2	20
234	On the origins of diastereoselectivity in the conjugate additions of the antipodes of lithium N-benzyl-(N-α-methylbenzyl)amide to enantiopure cis- and trans-dioxolane containing α,β-unsaturated esters. Organic and Biomolecular Chemistry, 2012, 10, 6186.	1.5	20

#	Article	IF	CITATIONS
235	Asymmetric synthesis of (â^')-(S,S)-homaline. Tetrahedron Letters, 2012, 53, 1119-1121.	0.7	20
236	A diastereodivergent strategy for the asymmetric syntheses of (â^')-martinellic acid and (â^')-4-epi-martinellic acid. Tetrahedron, 2013, 69, 9779-9803.	1.0	20
237	An efficient asymmetric synthesis of (â^')-lupinine. Chemical Communications, 2014, 50, 8309.	2.2	20
238	Stereocontrolled synthesis of N-methyl-1,2,3,4-tetrahydroisoquinoline derivatives via chromium tricarbonyl methodologies. Journal of Organometallic Chemistry, 1990, 400, 223-234.	0.8	19
239	Bifunctional chiral auxiliaries 6: Alkylations of enolates derived from 1,3-diacylimidazolidine- 2-thiones and 1,3-diacylimidazolidin-2-ones. Tetrahedron: Asymmetry, 1994, 5, 585-606.	1.8	19
240	Asymmetric synthesis of N-protected syn and anti (E)-3-amino-2-hydroxy-4-hexenoate: A practical method for the C-α epimerization of anti β-amino-I±-hydroxy acids. Tetrahedron, 1999, 55, 533-540.	1.0	19
241	Asymmetric synthesis of pent-3-yl (R)-6-methyl-cyclohex-1-ene carboxylate. Tetrahedron: Asymmetry, 2006, 17, 2183-2186.	1.8	19
242	Asymmetric synthesis of 4-amino-Î ³ -butyrolactones via lithium amide conjugate addition. Tetrahedron, 2007, 63, 5855-5872.	1.0	19
243	The dienolate aldol reaction of (E)-N-crotonoyl C(4)-isopropyl SuperQuat: asymmetric synthesis of α-vinyl-β-hydroxycarboxylic acid derivatives and conversion to α-ethylidene-β-hydroxyesters (β-substituted) Tj ET	Qq1 1 0.7	7844314 rg <mark>8</mark> 1
244	Novel Small-Molecule Inhibitors of Arylamine N-Acetyltransferases: Drug Discovery by High Throughput Screening. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 117-124.	0.6	19
245	Application of the iron acyl complex R-(-)-[(η5-C5H5)Fe(CO)(PPh3)- COCH2O({{1R,2S}},5Rmenthyl)] as a homochiral formyl anion equivalent. Tetrahedron Letters, 1989, 30, 2971-2974.	0.7	18
246	Asymmetric synthesis of (S)-(â^')-methyl tropinate: application of the iron acyl complex (S)-(+)-[(η5-C5H5)Fe(CO)(PPh3)COCH2Ph] as a homochiral phenylacetate enolate equivalent Tetrahedron, 1993, 49, 5635-5647.	1.0	18
247	Base induced C-5 epimerisation of 4-methyl-5-phenyl oxazolidinones: Chiral auxiliaries derived from norephedrine and norpseudoephedrine Tetrahedron: Asymmetry, 1993, 4, 2513-2516.	1.8	18
248	Asymmetric synthesis of \hat{I}_{\pm} -mercapto- \hat{I}^2 -amino acid derivatives: application to the synthesis of polysubstituted thiomorpholines. Tetrahedron: Asymmetry, 2006, 17, 1135-1145.	1.8	18
249	Enantiospecific Stereodivergent Synthesis of <i>trans</i> ―and <i>cis</i> â€ <i>N</i> (2),3â€Dimethylâ€4â€phenylâ€1,2,3,4â€tetrahydroisoquinolines. Chemistry - an Asian Journa 2010, 5, 589-604.	al 1. 7	18
250	Alkylation and aldol reactions of acyl derivatives of N-1-(1′-naphthyl)ethyl-O-tert-butylhydroxylamine: asymmetric synthesis of α-alkoxy-, α-substituted-β-alkoxy- and α,β-dialkoxyaldehydes. Tetrahedron, 2010, 66, 4167-4194.	1.0	18
251	Asymmetric syntheses of 3,4-syn- and 3,4-anti-3-substituted-4-aminopiperidin-2-ones: application to the asymmetric synthesis of (+)-(3S,4R)-cisapride. Tetrahedron, 2012, 68, 3263-3275.	1.0	18
252	Asymmetric Syntheses of (â^')-3- <i>epi</i> -Fagomine, (2 <i>R</i> ,3 <i>S</i> ,4 <i>R</i>)-Dihydroxypipecolic Acid, and Several Polyhydroxylated Homopipecolic Acids. Journal of Organic Chemistry, 2014, 79, 10932-10944.	1.7	18

#	Article	IF	CITATIONS
253	The Hancock Alkaloids Angustureine, Cuspareine, Galipinine, and Galipeine: A Review of their Isolation, Synthesis, and Spectroscopic Data. European Journal of Organic Chemistry, 2019, 2019, 5093-5119.	1.2	18
254	Tetrahydroisoquinolines. Part 4. Enantioselective conversion of (+)-amphetamine into (+)-(1R,3S,4S)- and (–)-(1S,3S,4R)-1,2,3,4-tetramethyl-1,2,3,4-tetrahydroisoquinoline via tricarbonyl(arene)chromium methodology. Journal of the Chemical Society Perkin Transactions 1, 1988, , 1481-1487.	0.9	17
255	Asymmetric synthesis of 2-aryl-tetrahydropyrans via arene chromium tricarbonyl methodology 2: 2-Aryl-3-ethyl-4-chloro-tetrahydropyrans. Tetrahedron: Asymmetry, 1991, 2, 1089-1092.	1.8	17
256	Deracemisation of α-amino acids—(R)- and (S)-phenylalanine from the same enantiomer of a homochiral auxiliary. Tetrahedron: Asymmetry, 1998, 9, 2795-2798.	1.8	17
257	Double diastereoselective [3,3]-sigmatropic aza-Claisen rearrangements. Chemical Communications, 2003, , 2134.	2.2	17
258	Stereoselective conjugate addition reactions of lithium amides to α,β-unsaturated chiral iron acyl complexes [(η5-C5H5)Fe(CO)(PPh3)(COCHCHR)]. Journal of Organometallic Chemistry, 2004, 689, 4184-4209.	0.8	17
259	Asymmetric Syntheses of the Homalium Alkaloids (â^')-(<i>S</i> , <i>S</i>)-Homaline and (â^')-(<i>R</i> , <i>R</i>)-Hopromine. Journal of Organic Chemistry, 2012, 77, 7028-7045.	1.7	17
260	Asymmetric syntheses of 2,5-dideoxy-2,5-imino-d-glucitol [(+)-DGDP] and 1,2,5-trideoxy-1-amino-2,5-imino-d-glucitol [(+)-ADGDP]. Tetrahedron, 2014, 70, 3601-3607.	1.0	17
261	Doubly diastereoselective conjugate additions of the antipodes of lithium N-benzyl-N-(α-methylbenzyl)amide to enantiopure ε-O-protected α,β-unsaturated esters derived from d-ribose. Tetrahedron: Asymmetry, 2014, 25, 534-546.	1.8	17
262	Asymmetric syntheses of ethyl (S)-(+)-2-methylhept-4-ynoate using both enantiomers of the chiral iron auxiliary [(η5-C5H5)Fe(CO)(PPh3). Tetrahedron: Asymmetry, 1991, 2, 1075-1082.	1.8	16
263	Bifunctional chiral auxiliaries 4: Alkylation of enolates derived from 1,3-diacyl-trans-4,5-tetramethyleneimidazolidin-2-ones. Tetrahedron Letters, 1992, 33, 1117-1120.	0.7	16
264	Resolution of the chiral iron acetyl complex [(C5H5)Fe(CO)(PPh3)COCH3]. Tetrahedron: Asymmetry, 1993, 4, 1479-1480.	1.8	16
265	Opening of carbohydrate 56-epoxides with chiral acetate and propionate enolate equivalents attached to the iron chiral auxiliary [(C5H5)Fe(CO)(PPh3)] Tetrahedron: Asymmetry, 1994, 5, 2563-2570.	1.8	16
266	Asymmetric synthesis of methyl α-L-daunosaminide hydrochloride. Tetrahedron: Asymmetry, 1996, 7, 1273-1274.	1.8	16
267	Conformational diastereoisomers of PPh3 coordinated to stereogenic metal centres as molecular optical switches. Tetrahedron: Asymmetry, 2001, 12, 1621-1624.	1.8	16
268	2-Halo-diketopiperazines as chiral glycine cation equivalents. Tetrahedron: Asymmetry, 2004, 15, 3989-4001.	1.8	16
269	Absolute Configuration Assignment by Asymmetric Syntheses of the Homalium Alkaloids (â~')-(<i>R</i> , <i>R</i> ,R)-Hoprominol and (â~')-(4′ <i>S</i> ,4″ <i>R</i> ,2‴ <i>R</i>)-Hopromalinol. Journal of Organic Chemistry, 2012, 77, 9724-9737.	1.7	16
270	Pyrrolizidines, indolizidines and quinolizidines via a double reductive cyclisation protocol: concise asymmetric syntheses ofÂ(+)-trachelanthamidine, (+)-tashiromine and (+)-epilupinine. Tetrahedron, 2016, 72, 7417-7429.	1.0	16

#	Article	IF	CITATIONS
271	Asymmetric syntheses of (â^')-hastanecine, (â^')-turneforcidine and (â^')-platynecine. Tetrahedron, 2016, 72, 4523-4535.	1.0	16
272	2-Arylbenzo[<i>d</i>]oxazole Phosphinate Esters as Second-Generation Modulators of Utrophin for the Treatment of Duchenne Muscular Dystrophy. Journal of Medicinal Chemistry, 2020, 63, 7880-7891.	2.9	16
273	A convenient synthesis of βγ-unsaturated carboxylic acids and esters. The isomeric 5-t-butylcyclohex-2-enecarboxylic acids. Journal of the Chemical Society Perkin Transactions 1, 1976, , 2279-2280.	0.9	15
274	Asymmetric synthesis of phenyl alkyl sulphoxides via the non-destructive mediation of the chiral iron acyl [(η5-C5H5)Fe(CO)(PPh3)COCH2Me]. Journal of the Chemical Society Chemical Communications, 1988, , 780-781.	2.0	15
275	Chiral recognition in the Michael addition reaction between lithium N-3,4-dimethoxybenzyl-α-methylbenzylamide and the chiral iron crotonoyl complex [(C5H5)Fe(CO)(PPh3)(COCHCHMe)]. Journal of the Chemical Society Chemical Communications, 1990, , 1554-1555.	2.0	15
276	First asymmetric synthesis of the Kelatorphan-like enkephalinase inhibitor (1S,2R,2′S )-2-[2′-(N-hydroxycarbamoylmethyl)-3′-phenylpropionylamino]cyclohexane-1-carboxylic ac Journal of the Chemical Society Perkin Transactions 1, 1998, , 2629-2634.	ido.9	15
277	Asymmetric synthesis of β-lactams and pseudopeptides via stereoselective conjugate additions of lithium (α-methylbenzyl)allylamide to α,β-unsaturated iron acyl complexes. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3105-3110.	0.9	15
278	Kinetic resolution of ?-acetoxy carboxylic acids with homochiral SuperQuats. , 2000, 12, 483-487.		15
279	Asymmetric syntheses of enantiopure C(5)-substituted transpentacins via diastereoselective Ireland–Claisen rearrangements. Chemical Communications, 2013, 49, 7037.	2.2	15
280	Asymmetric syntheses of dihydroxyhomoprolines via doubly diastereoselective lithium amide conjugate addition reactions. Tetrahedron, 2013, 69, 8680-8704.	1.0	15
281	Pinacolatoboron fluoride (pinBF) is an efficient fluoride transfer agent for diastereoselective synthesis of benzylic fluorides. Tetrahedron Letters, 2015, 56, 3373-3377.	0.7	15
282	Syntheses of Dihydroconduramines (±)-B-1, (±)-E-1, and (±)-F-1 via Diastereoselective Epoxidation of N-Protected 4-Aminocyclohex-2-en-1-ols. Journal of Organic Chemistry, 2015, 80, 6609-6618.	1.7	15
283	Asymmetric Syntheses of (â^')-ADMJ and (+)-ADANJ: 2-Deoxy-2-amino Analogues of (â^')-1-Deoxymannojirimycin and (+)-1-Deoxyallonojirimycin. Journal of Organic Chemistry, 2016, 81, 6481-6495.	1.7	15
284	Stereoselective carbon–carbon bond formation via alkylation of [(Î5C5H5)Fe(PPh3)(CO)(COMeHR)](R) Tj Chemical Society Chemical Communications, 1984, .	ETQq0 0 C 2.0	rgBT /Overlo 14
285	Complementary stereoselective cyclisations of N-(3,4-dimethoxybenzyl)ephedrine and its chromium tricarbonyl complex to trans- and cis-2,3-dimethyl-4-phenyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines respectively. Journal of the Chemical Society Chemical Communications. 1988 648.	2.0	14
286	Asymmetric synthesis of (1R,8S)- and (1S,8S)-1-hydroxypyrrolizidin-3-ones from Boc-L-prolinal and (S)- and (R)-[(η5-C5H5)Fe(CO)(PPh3)(Ac)], respectively. Journal of the Chemical Society Chemical Communications, 1988, , 160-161.	2.0	14
287	Ammonium directed dihydroxylation of N,N-dibenzylaminocyclohex-2-ene: metal-free syntheses of the diastereoisomers of 3-dibenzylamino-1,2-dihydroxycyclohexane. Chemical Communications, 2005, , 4536.	2.2	14
288	Asymmetric synthesis of <i>anti</i> â€î±â€alkylâ€î²â€amino carboxamides. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 175-183.	0.0	14

#	Article	IF	CITATIONS
289	Concise total asymmetric syntheses of (â^)-fagomine, two of its epimers, and two seven-membered ring congeners. Tetrahedron, 2015, 71, 7170-7180.	1.0	14
290	Asymmetric synthesis of N,O-diacetyl-3-epi-xestoaminol C: structure and absolute configuration confirmation of 3-epi-xestoaminol C. Tetrahedron Letters, 2016, 57, 1270-1272.	0.7	14
291	Asymmetric synthesis of 2-aryl-tetrahydropyrans via arene chromium tricarbonyl methodology 1: cis-2-Aryl-4-chloro-tetrahydropyrans. Tetrahedron: Asymmetry, 1991, 2, 1085-1088.	1.8	13
292	Asymmetric synthesis of sulfinyl-substituted arene chromium tricarbonyl complexes. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3405-3412.	0.9	13
293	Asymmetric synthesis of β-substituted Baylis–Hillman products via lithium amide conjugate addition. Tetrahedron, 2007, 63, 7036-7046.	1.0	13
294	Syntheses of the racemic jaborandi alkaloids pilocarpine, isopilocarpine and pilosinine. Tetrahedron Letters, 2009, 50, 3509-3512.	0.7	13
295	Asymmetric synthesis of β-fluoroaryl-β-amino acids. Tetrahedron: Asymmetry, 2012, 23, 910-925.	1.8	13
296	(â^')-(S)-Nakinadine B: first asymmetric synthesis. Chemical Communications, 2012, 48, 9236.	2.2	13
297	Synthesis of SMT022357 enantiomers and inÂvivo evaluation in a Duchenne muscular dystrophy mouse model. Tetrahedron, 2020, 76, 130819.	1.0	13
298	Chiral dienolates. Tetrahedron, 1986, 42, 3987-3997.	1.0	12
299	An oxidatively-activated safety catch linker for solid phase synthesis. Organic and Biomolecular Chemistry, 2008, 6, 1625.	1.5	12
300	Concise, efficient and highly selective asymmetric synthesis of (+)-(3S,4R)-cisapride. Tetrahedron: Asymmetry, 2011, 22, 1591-1593.	1.8	12
301	Stereospecific Cyclization Strategies for α,Îμ-Dihydroxy-β-amino Esters: Asymmetric Syntheses of Imino and Amino Sugars. Journal of Organic Chemistry, 2014, 79, 9686-9698.	1.7	12
302	Conformational analysis of triphenylphosphine ligands in stereogenic monometallic complexes: tools for predicting the preferred configuration of the triphenylphosphine rotor. Dalton Transactions, 2015, 44, 5451-5466.	1.6	12
303	Epoxidation of trans-4-Aminocyclohex-2-en-1-ol Derivatives: Competition of Hydroxy-Directed and Ammonium-Directed Pathways. Australian Journal of Chemistry, 2015, 68, 610.	0.5	12
304	Trading N and O. Part 3: Synthesis of 1,2,3,4-tetrahydroisoquinolines from α-hydroxy-β-amino esters. Tetrahedron, 2016, 72, 2139-2163.	1.0	12
305	Asymmetric Synthesis of Pyrrolizidines, Indolizidines and Quinolizidines via a Double Reductive Cyclisation Protocol. Synlett, 2017, 28, 2697-2706.	1.0	12
306	Asymmetric Syntheses of (2 <i>R</i> ,3 <i>S</i>)-3-Hydroxyproline and (2 <i>S</i> ,3 <i>S</i>)-3-Hydroxyproline. Organic Letters, 2018, 20, 4135-4139.	2.4	12

#	Article	IF	CITATIONS
307	Ammonium-Directed Oxidation of Cyclic Allylic and Homoallylic Amines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1295-1306.	0.0	12
308	Kinetic resolution of the chiral iron acetyl complexes [Fe(CO)(η5-C5H5)(L)COCH3][L = PPh3, P(p-tolyl)3]via aldol reactions with camphor. Journal of the Chemical Society Perkin Transactions 1, 1994, , 933-941.	0.9	11
309	Asymmetric synthesis of a homochiral differentially protected pseudo-meso bis-β-amino acid scaffold. Tetrahedron: Asymmetry, 2001, 12, 2941-2945.	1.8	11
310	The stereodivergent asymmetric synthesis of a range of 2-(1′-hydroxyalkyl)phenols. Tetrahedron, 2010, 66, 8076-8088.	1.0	11
311	Diastereoselective Ireland–Claisen rearrangements of substituted allyl β-amino esters: applications in the asymmetric synthesis of C(5)-substituted transpentacins. Organic and Biomolecular Chemistry, 2014, 12, 2702.	1.5	11
312	Syntheses of (R)-sitagliptin. Tetrahedron: Asymmetry, 2015, 26, 1109-1116.	1.8	11
313	Strategies for the construction of morphinan alkaloid AB-rings: regioselective Friedel-Crafts-type cyclisations of γ-aryl-β-benzoylamido acids with asymmetrically substituted γ-aryl rings. Tetrahedron: Asymmetry, 2016, 27, 274-284.	1.8	11
314	Stereoselective Ammonium-Directed Epoxidation in the Asymmetric Syntheses of Dihydroconduramines (–)-A-2, (–)-B-2, (–)-C-3 and (+)-F-3. Synthesis, 2018, 50, 64-83.	1.2	11

31

#	Article	IF	CITATIONS
325	(â^')-Pseudodistomin E: First Asymmetric Synthesis and Absolute Configuration Assignment. Organic Letters, 2017, 19, 1638-1641.	2.4	9
326	Discovery and mechanism of action studies of 4,6-diphenylpyrimidine-2-carbohydrazides as utrophin modulators for the treatment of Duchenne muscular dystrophy. European Journal of Medicinal Chemistry, 2021, 220, 113431.	2.6	9
327	Asymmetric Synthesis of α-Amino Carbonyls (Aldehydes, Ketones and Acids) using Lithium (R)-N-benzyl-N-α-methylbenzylamide. Synlett, 2001, 2001, 1599-1601.	1.0	7
328	Asymmetric syntheses of the methyl glycosides of 2-deoxy-2-aminohexoses: d-allosamine, d-idosamine and d-talosamine. Tetrahedron, 2014, 70, 7106-7119.	1.0	7
329	Enantiopure 3-Amino-Substituted 1-Indanones, 1-Tetralones, and 1-Benzosuberones via Friedel–Crafts Cyclisation of ï‰-Aryl-β-benzÂamido Acids. Synlett, 2015, 26, 1541-1544.	1.0	7
330	Diastereoselective Ammonium-Directed Epoxidation in the Asymmetric Syntheses of Dihydroconduramines (+)-C-2, (â^')-C-2, (+)-D-2, (+)-E-2, (+)-F-2, and (â^')-F-2. Journal of Organic Chemistry, 2018, 83, 9939-9957.	1.7	7
331	Asymmetric syntheses of fagomine and its stereoisomers. Tetrahedron, 2019, 75, 130727.	1.0	7
332	N-Acetylcolchinol Methyl Ether (a Natural Product); Suhailamine (a Phantom Natural Product). Journal of Natural Products, 2019, 82, 2659-2663.	1.5	7
333	Asymmetric syntheses of the 1-hydroxymethyl-2-hydroxy substituted pyrrolizidines (â^')-macronecine, (â^')-petasinecine, (â^')-1- epi -macronecine, (+)-1- epi -petasinecine and (+)-2- epi -rosmarinecine. Tetrahedron, 2016, 72, 7449-7461.	1.0	6
334	Asymmetric Syntheses of 3-Deoxy-3-aminosphingoid Bases: Approaches Based on Parallel Kinetic Resolution and Double Asymmetric Induction. Journal of Organic Chemistry, 2017, 82, 12447-12466.	1.7	6
335	Asymmetric syntheses of the N-terminal α-hydroxy-β-amino acid components of microginins 612, 646 and 680. Tetrahedron: Asymmetry, 2017, 28, 1756-1764.	1.8	6
336	Asymmetric synthesis of the allocolchicinoid natural product N-acetylcolchinol methyl ether (suhailamine), solid state and solution phase conformational analysis. Tetrahedron, 2019, 75, 130694.	1.0	6
337	Synthesis of (â^')-Conduramine A1, (â^')-Conduramine A2 and (â^')-Conduramine E2 in Six Steps from Cyclohexa-1,4-diene. Organic Letters, 2019, 21, 7933-7937.	2.4	6
338	A simple desymmetrisation approach to unsymmetric N,N′-disubstituted cyclic ureas. Tetrahedron Letters, 1999, 40, 7143-7146.	0.7	5
339	Solution phase structures of enantiopure and racemic lithium N-benzyl-N-(α-methylbenzyl)amide in THF: low temperature 6Li and 15N NMR spectroscopic studies. Tetrahedron: Asymmetry, 2013, 24, 947-952.	1.8	5
340	Stereoselective syntheses of substituted succinic acid derivatives of the iron chiral auxiliary [(η5-C5H5)Fe(CO)(PPh3)]. Tetrahedron, 2014, 70, 8938-8951.	1.0	5
341	The asymmetric synthesis of enantiopure C(5)-substituted transpentacins via diastereoselective conjugate additions to a l²â€²-amino-l̂±,l²-unsaturated ester. Tetrahedron: Asymmetry, 2016, 27, 208-221.	1.8	5
342	Probing Competitive and Co-operative Hydroxyl and Ammonium Hydrogen-Bonding Directed Epoxidations. Journal of Organic Chemistry, 2017, 82, 10297-10309.	1.7	5

#	Article	IF	CITATIONS
343	Trading N and O. Part 4: Asymmetric synthesis of syn-β-substituted-α-amino acids. Tetrahedron, 2018, 74, 5049-5061.	1.0	5
344	Asymmetric synthesis of d-fagomine and its diastereoisomers. Tetrahedron, 2018, 74, 7261-7271.	1.0	5
345	Decreasing HepG2 Cytotoxicity by Lowering the Lipophilicity of Benzo[d]oxazolephosphinate Ester Utrophin Modulators. ACS Medicinal Chemistry Letters, 2020, 11, 2421-2427.	1.3	5
346	A Phenotypic Screen Identifies a Compound Series That Induces Differentiation of Acute Myeloid Leukemia Cells <i>In Vitro</i> and Shows Antitumor Effects <i>In Vivo</i> . Journal of Medicinal Chemistry, 2021, 64, 15608-15628.	2.9	5
347	Synthesis of (R)-{η6-[O-methyl-N-(α-methylbenzyl)hydroxyamino]benzene} chromium tricarbonyl via nucleophilic aromatic substitution of (η6-fluorobenzene) chromium tricarbonyl. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2850-2855.	1.3	4
348	Crystal Structures of Dipeptides Derived from the β-Amino Acids (1R,2S)-2-Aminocyclopentanecarboxylic Acid and (1S,2R,3S)-2-Amino-3-methylcyclopentanecarboxylic Acid. Journal of Chemical Crystallography, 2011, 41, 1722-1728.	0.5	4
349	Synthesis and Crystal Structures of N-Aryl-N-methylaminocyclohexanols. Journal of Chemical Crystallography, 2013, 43, 646-654.	0.5	4
350	Microcosamine A, Microgrewiapine A and Microgrewiapine B: three homochiral alkaloids?. Tetrahedron, 2021, 89, 132056.	1.0	4
351	Stereochemical Assignment of Substituted 2-Aminobicyclo[3.1.0]hexane and 2-Aminobicyclo[5.1.0]octane Derivatives via Single Crystal X-ray Diffraction. Journal of Chemical Crystallography, 2011, 41, 1007-1012.	0.5	3
352	Asymmetric syntheses of the methyl 3-deoxy-3-amino-glycosides of d-glycero-l-gulo-heptose, d-glycero-d-galacto-heptose, d-glycero-l-allo-heptose and d-glycero-d-allo-heptose. Tetrahedron: Asymmetry, 2016, 27, 31-42.	1.8	3
353	Microconine [N-methyl-2-methyl-3-methoxy-6-(deca-l',3′,5′-trienyl)piperidine, an alkaloid from Microcos paniculata]: Synthesis, stereochemistry and spectroscopic data. Tetrahedron, 2021, 79, 131860.	1.0	3
354	Synthesis and Configuration of <i>O</i> -Acetyl Microgrewiapine A: Phantomization of <i>O</i> -Acetyl 6- <i>epi</i> -Microgrewiapine A. Journal of Natural Products, 2022, 85, 306-312.	1.5	3
355	Stereochemical aspects of nucleophilic addition reactions to alkoxycarbene cations of the iron chiral auxiliary [(Î-5-C5H5)Fe(CO)(PPh3)]. New Journal of Chemistry, 2013, 37, 3406.	1.4	2
356	Synthesis and Crystal Structures of (RS,RS,RS)- and (1RS,2RS,3SR)-3-(N-Methylamino)cyclohexane-1,2-diol. Journal of Chemical Crystallography, 2014, 44, 30-35.	0.5	2
357	The Synthesis and Crystal Structure of Cbz-[(1R,2S)-ACPC]3-OH: A Tripeptide Derived from the β-Amino Acid (1R,2S)-Cispentacin. Journal of Chemical Crystallography, 2014, 44, 205-209.	0.5	2
358	The Homalium Alkaloids: Isolation, Synthesis, and Absolute Configuration Assignment. The Alkaloids Chemistry and Biology, 2015, 74, 121-158.	0.8	2
359	Asymmetric ortho-deprotonation of (η6-arene) chromium tricarbonyl complexes substituted with a chiral hydroxylamine. Tetrahedron, 2017, 73, 5411-5417.	1.0	2
360	The asymmetric synthesis of (S,S)-methylphenidate hydrochloride via ring-opening of an enantiopure aziridinium intermediate with phenylmagnesium bromide. Tetrahedron, 2019, 75, 130713.	1.0	2

STEP	 $\sim r$	` · · · · ·	
S I F DI			L C
JILF	υL	ועהע	

#	Article	IF	CITATIONS
361	Structure-activity relationships of 2-pyrimidinecarbohydrazides as utrophin modulators for the potential treatment of Duchenne muscular dystrophy. Bioorganic and Medicinal Chemistry, 2022, 69, 116812.	1.4	2
362	Extending the Curtin–Hammett principle: the relative rates of intramolecular cyclisation versus intermolecular processes. Tetrahedron Letters, 2014, 55, 1886-1889.	0.7	1
363	Diastereoselective conjugate additions to alkoxycarbene cations of the iron chiral auxiliary [(\hat{I} · 5 -C 5 H) Tj ETQq1	1 0.78431 0.8	4 ₁ rgBT /Ove
364	Synthesis and Crystal Structures of 2-Azido-4-aminocyclohexane-1,3-diols. Journal of Chemical Crystallography, 2015, 45, 401-409.	0.5	1
365	Asymmetric synthesis of secondary benzylic alcohols via arene chromium tricarbonyl complexes. Tetrahedron, 2018, 74, 5965-5973.	1.0	1
366	Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angewandte Chemie, 2020, 132, 2441-2449.	1.6	1
367	Aminothiazolones as potent, selective and cell active inhibitors of the PIM kinase family. Bioorganic and Medicinal Chemistry, 2020, 28, 115724.	1.4	1
368	Short asymmetric syntheses of sphinganine [(2S,3R)-2-aminooctadecane-1,3-diol] and its C(2)-epimer. Tetrahedron Letters, 2021, 66, 152743.	0.7	1
369	Mutual kinetic resolution: probing enantiorecognition phenomena and screening for kinetic resolution with racemic reagents. Organic and Biomolecular Chemistry, 2021, 19, 2847-2855.	1.5	1
370	Identification and Preliminary Structure-Activity Relationship Studies of 1,5-Dihydrobenzo[e][1,4]oxazepin-2(3H)-ones That Induce Differentiation of Acute Myeloid Leukemia Cells In Vitro. Molecules, 2021, 26, 6648.	1.7	1
371	Asymmetric Synthesis of Cyclic β-Amino Acids and Cyclic Amines via Sequential Diastereoselective Conjugate Addition and Ring Closing Metathesis ChemInform, 2003, 34, no.	0.1	0
372	Synthesis and in vitro Evaluation of Novel Small Molecule Inhibitors of Bacterial Arylamine N-Acetyltransferases (NATs). ChemInform, 2003, 34, no.	0.1	0
373	N-α-Benzyloxyacetyl Derivatives of (S)-4-Benzyl-5,5-dimethyloxazolidin-2-one for the Asymmetric Synthesis of Differentially Protected α,β-Dihydroxyaldehydes ChemInform, 2004, 35, no.	0.1	0
374	Double Diastereoselective SuperQuat Glycolate Aldol Reactions: Application to the Asymmetric Synthesis of Polyfunctionalized Lactones ChemInform, 2005, 36, no.	0.1	0
375	Double Diastereoselective SuperQuat Glycolate Aldol Reactions: Application to the Asymmetric Synthesis of Polyfunctionalized Lactones ChemInform, 2005, 36, no.	0.1	0
376	Highly Enantioselective Organocatalysis of the Hajos—Parrish—Eder—Sauer—Wiechert Reaction by the β-Amino Acid Cispentacin ChemInform, 2005, 36, no.	0.1	0
377	The Conjugate Addition of Enantiomerically Pure Lithium Amides as Homochiral Ammonia Equivalents: Scope, Limitations, and Synthetic Applications. ChemInform, 2005, 36, no.	0.1	0
378	Ammonium Directed Dihydroxylation of N,N-Dibenzylaminocyclohex-2-ene: Metal-Free Syntheses of the Diastereoisomers of 3-Dibenzylamino-1,2-dihydroxycyclohexane ChemInform, 2006, 37, no.	0.1	0

#	Article	IF	CITATIONS
379	The Synthesis and Crystal Structures of Two Hydrogen-Bonded N-Oxides. Journal of Chemical Crystallography, 2014, 44, 548-554.	0.5	Ο
380	Solid state conformations of α,β-unsaturated hydroxamates derived from the â€~chiral Weinreb amide' auxiliary (S)- N -1-(1′-naphthyl)ethyl- O - tert -butylhydroxylamine. Tetrahedron: Asymmetry, 2017, 28, 1337-1341.	1.8	0
381	A Semiautomated, Phenotypic, In Vitro Scratch Assay for Assessing Retinal Pigment Epithelial Cell Wound Healing. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 257-266.	0.6	0
382	Microgrewiapine C: Asymmetric Synthesis, Spectroscopic Data, and Configuration Assignment. Journal of Natural Products, 0, , .	1.5	0