Kristell Hergoualc'h

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nature Geoscience, 2022, 15, 369-374.	12.9	25
2	How can process-based modeling improve peat CO2 and N2O emission factors for oil palm plantations?. Science of the Total Environment, 2022, , 156153.	8.0	6
3	Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 2022, 185, 106501.	10.8	13
4	Variation in Vegetation and Ecosystem Carbon Stock Due to the Conversion of Disturbed Forest to Oil Palm Plantation in Peruvian Amazonia. Ecosystems, 2021, 24, 351-369.	3.4	7
5	Spatio-Temporal Variability of Peat CH4 and N2O Fluxes and Their Contribution to Peat GHG Budgets in Indonesian Forests and Oil Palm Plantations. Frontiers in Environmental Science, 2021, 9, .	3.3	15
6	Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N ₂ O emissions from nitrogen inputs to managed soils. Global Change Biology, 2021, 27, 6536-6550.	9.5	24
7	Degradation-driven changes in fine root carbon stocks, productivity, mortality, and decomposition rates in a palm swamp peat forest of the Peruvian Amazon. Carbon Balance and Management, 2021, 16, 33.	3.2	6
8	Advances in Amazonian Peatland Discrimination With Multi-Temporal PALSAR Refines Estimates of Peatland Distribution, C Stocks and Deforestation. Frontiers in Earth Science, 2021, 9, .	1.8	8
9	Dataset on soil carbon dioxide fluxes from an incubation with tropical peat from three different land-uses in Jambi Sumatra Indonesia. Data in Brief, 2021, 39, 107597.	1.0	1
10	Oil palm plantations are large sources of nitrous oxide, but where are the data to quantify the impact on global warming?. Current Opinion in Environmental Sustainability, 2020, 47, 81-88.	6.3	13
11	How does replacing natural forests with rubber and oil palm plantations affect soil respiration and methane fluxes?. Ecosphere, 2020, 11, e03284.	2.2	5
12	Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agricultural and Forest Meteorology, 2020, 295, 108167.	4.8	25
13	Spatial and temporal variability of soil N ₂ O and CH ₄ fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Global Change Biology, 2020, 26, 7198-7216.	9.5	26
14	Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 591-623.	2.1	35
15	Greenhouse gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil moisture and palm roots effects. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 625-643.	2.1	29
16	Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 645-668.	2.1	20
17	Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates. Ecosystems, 2018, 21, 868-885.	3.4	23
18	An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 2017, 12, 12.	3.2	97

Kristell Hergoualc'h

#	Article	IF	CITATIONS
19	Characterizing degradation of palm swamp peatlands from space and on the ground: An exploratory study in the Peruvian Amazon. Forest Ecology and Management, 2017, 393, 63-73.	3.2	33
20	Substantial N ₂ O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environmental Research Letters, 2017, 12, 104007.	5.2	44
21	Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry, 2017, 135, 203-220.	3.5	61
22	Denial of longâ€ŧerm issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	9.5	114
23	How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application?. Geoderma, 2016, 268, 41-51.	5.1	76
24	Nitrous oxide emissions along a gradient of tropical forest disturbance on mineral soils in Sumatra. Agriculture, Ecosystems and Environment, 2015, 214, 107-117.	5.3	25
25	Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 789-807.	2.1	74
26	Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 2014, 334, 241-253.	3.2	48
27	Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Scientific Reports, 2014, 4, 6112.	3.3	258
28	Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 2012, 148, 102-110.	5.3	81
29	Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Clobal Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	123
30	The utility of process-based models for simulating N2O emissions from soils: A case study based on Costa Rican coffee plantations. Soil Biology and Biochemistry, 2009, 41, 2343-2355.	8.8	19
31	Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry, 2008, 89, 329-345.	3.5	64