Kristell Hergoualc'h

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703840/publications.pdf

Version: 2024-02-01

361413 454955 31 1,398 20 30 citations h-index g-index papers 33 33 33 1683 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Scientific Reports, 2014, 4, 6112.	3.3	258
2	Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global Biogeochemical Cycles, 2011 , 25 , n/a - n/a .	4.9	123
3	Denial of longâ€term issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	9.5	114
4	An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 2017, 12, 12.	3.2	97
5	Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 2012, 148, 102-110.	5. 3	81
6	How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application?. Geoderma, 2016, 268, 41-51.	5.1	76
7	Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 789-807.	2.1	74
8	Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry, 2008, 89, 329-345.	3 . 5	64
9	Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry, 2017, 135, 203-220.	3.5	61
10	Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 2014, 334, 241-253.	3.2	48
11	Substantial N ₂ O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environmental Research Letters, 2017, 12, 104007.	5.2	44
12	Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 591-623.	2.1	35
13	Characterizing degradation of palm swamp peatlands from space and on the ground: An exploratory study in the Peruvian Amazon. Forest Ecology and Management, 2017, 393, 63-73.	3.2	33
14	Greenhouse gas emissions along a peat swamp forest degradation gradient in the Peruvian Amazon: soil moisture and palm roots effects. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 625-643.	2.1	29
15	Spatial and temporal variability of soil N ₂ O and CH ₄ fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Global Change Biology, 2020, 26, 7198-7216.	9.5	26
16	Nitrous oxide emissions along a gradient of tropical forest disturbance on mineral soils in Sumatra. Agriculture, Ecosystems and Environment, 2015, 214, 107-117.	5 . 3	25
17	Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agricultural and Forest Meteorology, 2020, 295, 108167.	4.8	25
18	Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nature Geoscience, 2022, 15, 369-374.	12.9	25

#	Article	IF	CITATIONS
19	Improved accuracy and reduced uncertainty in greenhouse gas inventories by refining the IPCC emission factor for direct N ₂ 0 emissions from nitrogen inputs to managed soils. Global Change Biology, 2021, 27, 6536-6550.	9.5	24
20	Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates. Ecosystems, 2018, 21, 868-885.	3.4	23
21	Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Mara $ ilde{A}^3$ n river basin of the Peruvian Amazon. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 645-668.	2.1	20
22	The utility of process-based models for simulating N2O emissions from soils: A case study based on Costa Rican coffee plantations. Soil Biology and Biochemistry, 2009, 41, 2343-2355.	8.8	19
23	Spatio-Temporal Variability of Peat CH4 and N2O Fluxes and Their Contribution to Peat GHG Budgets in Indonesian Forests and Oil Palm Plantations. Frontiers in Environmental Science, 2021, 9, .	3.3	15
24	Oil palm plantations are large sources of nitrous oxide, but where are the data to quantify the impact on global warming?. Current Opinion in Environmental Sustainability, 2020, 47, 81-88.	6.3	13
25	Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 2022, 185, 106501.	10.8	13
26	Advances in Amazonian Peatland Discrimination With Multi-Temporal PALSAR Refines Estimates of Peatland Distribution, C Stocks and Deforestation. Frontiers in Earth Science, 2021, 9, .	1.8	8
27	Variation in Vegetation and Ecosystem Carbon Stock Due to the Conversion of Disturbed Forest to Oil Palm Plantation in Peruvian Amazonia. Ecosystems, 2021, 24, 351-369.	3.4	7
28	Degradation-driven changes in fine root carbon stocks, productivity, mortality, and decomposition rates in a palm swamp peat forest of the Peruvian Amazon. Carbon Balance and Management, 2021, 16, 33.	3.2	6
29	How can process-based modeling improve peat CO2 and N2O emission factors for oil palm plantations?. Science of the Total Environment, 2022, , 156153.	8.0	6
30	How does replacing natural forests with rubber and oil palm plantations affect soil respiration and methane fluxes?. Ecosphere, 2020, 11, e03284.	2.2	5
31	Dataset on soil carbon dioxide fluxes from an incubation with tropical peat from three different land-uses in Jambi Sumatra Indonesia. Data in Brief, 2021, 39, 107597.	1.0	1