
Irving R Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanogel Crosslinking-Based Belousov–Zhabotinsky Self-Oscillating Polyacrylamide Gel with Improved Mechanical Properties and Fast Oscillatory Response. Journal of Physical Chemistry B, 2022, 126, 1108-1114.	1.2	2
2	Propagation behavior of silver hydroxide precipitate bands. Chemical Physics Letters, 2022, 800, 139681.	1.2	2
3	Heterogeneity-driven collective-motion patterns of active gels. Cell Reports Physical Science, 2022, 3, 100933.	2.8	3
4	The Briggs–Rauscher Reaction: A Demonstration of Sequential Spatiotemporal Patterns. Journal of Chemical Education, 2021, 98, 665-668.	1.1	9
5	Editorial: Advances in Oscillating Reactions. Frontiers in Chemistry, 2021, 9, 690699.	1.8	2
6	Influence of survival, promotion, and growth on pattern formation in zebrafish skin. Scientific Reports, 2021, 11, 9864.	1.6	5
7	Period-doubling route to mixed-mode chaos. Physical Review E, 2021, 104, 024211.	0.8	16
8	Insights from chemical systems into Turing-type morphogenesis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200269.	1.6	7
9	Rotational Locomotion of an Active Gel Driven by Internal Chemical Signals. Journal of Physical Chemistry Letters, 2021, 12, 11987-11991.	2.1	5
10	Mesoscopic Pitting Oscillation-Induced Periodic Anodic Layer Electrodissolution of Au(111). Journal of Physical Chemistry Letters, 2021, 12, 12062-12066.	2.1	2
11	Chemomechanical origin of directed locomotion driven by internal chemical signals. Science Advances, 2020, 6, eaaz9125.	4.7	16
12	Programmed Locomotion of an Active Gel Driven by Spiral Waves. Angewandte Chemie, 2020, 132, 7172-7178.	1.6	3
13	Programmed Locomotion of an Active Gel Driven by Spiral Waves. Angewandte Chemie - International Edition, 2020, 59, 7106-7112.	7.2	5
14	Post-canard symmetry breaking and other exotic dynamic behaviors in identical coupled chemical oscillators. Physical Review E, 2020, 101, 042222.	0.8	10
15	Capillarity-Induced Propagation Reversal of Chemical Waves in a Self-oscillating Gel. Journal of Physical Chemistry A, 2020, 124, 3530-3534.	1.1	3
16	Effect of Reaction Parameters on the Wavelength of Pulse Waves in the Belousov–Zhabotinsky Reaction–Diffusion System. Journal of Physical Chemistry A, 2019, 123, 9292-9297.	1.1	4
17	The smallest chimera: Periodicity and chaos in a pair of coupled chemical oscillators. Chaos, 2019, 29, 013131.	1.0	19
18	Turing patterns on radially growing domains: experiments and simulations. Physical Chemistry Chemical Physics. 2019, 21, 6718-6724.	1.3	15

#	Article	IF	CITATIONS
19	Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators. Chaos, 2019, 29, 023128.	1.0	3
20	Modulation of Turing Patterns in the CDIMA Reaction by Ultraviolet and Visible Light. Journal of Physical Chemistry A, 2019, 123, 992-998.	1.1	9
21	Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation. Chaos, 2018, 28, 045108.	1.0	7
22	Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS Nano, 2018, 12, 3804-3815.	7.3	38
23	Birth and Death of Invading Standing Waves in the BZâ€AOT Reactionâ€diffusion System. Israel Journal of Chemistry, 2018, 58, 776-780.	1.0	1
24	On the possibility of spontaneous chemomechanical oscillations in adsorptive porous media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170374.	1.6	1
25	Turing-Hopf front invasion: Rings and shells. Physical Review E, 2018, 98, .	0.8	1
26	Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator. Physical Review E, 2018, 97, 052214.	0.8	0
27	Photoâ€Controlled Waves and Active Locomotion. Chemistry - A European Journal, 2017, 23, 11181-11188.	1.7	7
28	Size-controlled synthesis of Cu2O nanoparticles via reaction-diffusion. Chemical Physics Letters, 2017, 669, 17-21.	1.2	6
29	Frontispiece: Photo ontrolled Waves and Active Locomotion. Chemistry - A European Journal, 2017, 23,	1.7	Ο
30	The Brandeis Science Posse: Building a Cohort Model Program To Retain Underserved Students in the Sciences. ACS Symposium Series, 2017, , 45-58.	0.5	6
31	Autonomous reciprocating migration of an active material. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8704-8709.	3.3	23
32	Biopolymer matrix for nano-encapsulation of urease – A model protein and its application in urea detection. Journal of Colloid and Interface Science, 2017, 490, 452-461.	5.0	29
33	Lightâ€Modulated Intermittent Wave Groups in a Diffusively Fed Reactive Gel. Angewandte Chemie, 2016, 128, 5072-5075.	1.6	2
34	Reaction–diffusion processes at the nano- and microscales. Nature Nanotechnology, 2016, 11, 312-319.	15.6	192
35	Spontaneous Pulsation of Peptide Microstructures in an Abiotic Liquid System. Journal of Chromatographic Science, 2016, 54, 1301-1309.	0.7	10
36	Retrograde and Direct Wave Locomotion in a Photosensitive Selfâ€Oscillating Gel. Angewandte Chemie - International Edition, 2016, 55, 14301-14305.	7.2	20

#	Article	IF	CITATIONS
37	Multifold Increases in Turing Pattern Wavelength in the Chlorine Dioxide-Iodine-Malonic Acid Reaction-Diffusion System. Physical Review Letters, 2016, 117, 056001.	2.9	12
38	Retrograde and Direct Wave Locomotion in a Photosensitive Selfâ€Oscillating Gel. Angewandte Chemie, 2016, 128, 14513-14517.	1.6	9
39	Lightâ€Modulated Intermittent Wave Groups in a Diffusively Fed Reactive Gel. Angewandte Chemie - International Edition, 2016, 55, 4988-4991.	7.2	9
40	Mechanism of the Ferrocyanide–Iodate–Sulfite Oscillatory Chemical Reaction. Journal of Physical Chemistry A, 2016, 120, 1951-1960.	1.1	8
41	Experimental, numerical, and mechanistic analysis of the nonmonotonic relationship between oscillatory frequency and photointensity for the photosensitive Belousov–Zhabotinsky oscillator. Chaos, 2015, 25, 064607.	1.0	17
42	Pulse-coupled BZ oscillators with unequal coupling strengths. Physical Chemistry Chemical Physics, 2015, 17, 4664-4676.	1.3	14
43	pH-Regulated Chemical Oscillators. Accounts of Chemical Research, 2015, 48, 593-601.	7.6	73
44	Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor. Chaos, 2015, 25, 013104.	1.0	21
45	From chemical systems to systems chemistry: Patterns in space and time. Chaos, 2015, 25, 097613.	1.0	49
46	DISSIPATIVE BZ PATTERNS IN SYSTEMS OF COUPLED NANO- AND MICRODROPLETS. World Scientific Lecture Notes in Complex Systems, 2014, , 169-183.	0.1	0
47	Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns. Chaos, 2014, 24, 023109.	1.0	6
48	Novel type of chimera spiral waves arising from decoupling of a diffusible component. Journal of Chemical Physics, 2014, 141, 024110.	1.2	17
49	"Photochemical Oscillatorâ€: Colored Hydrodynamic Oscillations and Waves in a Photochromic System. Journal of Physical Chemistry C, 2014, 118, 598-608.	1.5	27
50	Fronts and patterns in a spatially forced CDIMA reaction. Physical Chemistry Chemical Physics, 2014, 16, 26137-26143.	1.3	6
51	Condensation dynamics ofl-proline andl-hydroxyproline in solution. RSC Advances, 2014, 4, 7330-7339.	1.7	17
52	Combined excitatory and inhibitory coupling in a 1-D array of Belousov–Zhabotinsky droplets. Physical Chemistry Chemical Physics, 2014, 16, 10965-10978.	1.3	45
53	Target Turing Patterns and Growth Dynamics in the Chlorine Dioxide–Iodine–Malonic Acid Reaction. Journal of Physical Chemistry A, 2014, 118, 2393-2400.	1.1	12
54	Testing Turing's theory of morphogenesis in chemical cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4397-4402.	3.3	168

#	Article	IF	CITATIONS
55	Coupled chemical oscillators and emergent system properties. Chemical Communications, 2014, 50, 10758-10767.	2.2	50
56	Giant Volume Change of Active Gels under Continuous Flow. Journal of the American Chemical Society, 2014, 136, 7341-7347.	6.6	46
57	Multiple Length Scale Instabilities of Unidirectional Pulse Propagation in a Diffusion-Fed Gel. Journal of Physical Chemistry Letters, 2013, 4, 3891-3896.	2.1	9
58	Post-Self-Assembly Cross-Linking to Integrate Molecular Nanofibers with Copolymers in Oscillatory Hydrogels. Journal of Physical Chemistry B, 2013, 117, 6566-6573.	1.2	33
59	Forcing of Turing Patterns in the Chlorine Dioxide–Iodine–Malonic Acid Reaction with Strong Visible Light. Journal of Physical Chemistry A, 2013, 117, 9120-9126.	1.1	9
60	Photophobic and phototropic movement of a self-oscillating gel. Chemical Communications, 2013, 49, 7690.	2.2	49
61	Active Crossâ€Linkers that Lead to Active Gels. Angewandte Chemie - International Edition, 2013, 52, 11494-11498.	7.2	36
62	Chemical Oscillators in Structured Media. Accounts of Chemical Research, 2012, 45, 2160-2168.	7.6	63
63	Post-Self-Assembly Cross-Linking of Molecular Nanofibers for Oscillatory Hydrogels. Langmuir, 2012, 28, 3063-3066.	1.6	41
64	Turing patterns in the chlorine dioxide–iodine–malonic acid reaction with square spatial periodic forcing. Physical Chemistry Chemical Physics, 2012, 14, 6577.	1.3	23
65	Structural modulation of self-oscillating gels: changing the proximity of the catalyst to the polymer backbone to tailor chemomechanical oscillation. Soft Matter, 2012, 8, 7056.	1.2	19
66	Spiral waves with superstructures in a mixed-mode oscillatory medium. Journal of Chemical Physics, 2012, 137, 214303.	1.2	6
67	Two- and three-dimensional standing waves in a reaction-diffusion system. Physical Review E, 2012, 86, 045202.	0.8	6
68	Pulse oupled Chemical Oscillators with Time Delay. Angewandte Chemie - International Edition, 2012, 51, 6878-6881.	7.2	73
69	Coupled oscillations in a 1D emulsion of Belousov–Zhabotinsky droplets. Soft Matter, 2011, 7, 3155.	1.2	62
70	Locking of Turing patterns in the chlorine dioxide–iodine–malonic acid reaction with one-dimensional spatial periodic forcing. Physical Chemistry Chemical Physics, 2011, 13, 12578.	1.3	23
71	Terpyridine- and Bipyridine-Based Ruthenium Complexes as Catalysts for the Belousovâ^'Zhabotinsky Reaction. Journal of Physical Chemistry A, 2011, 115, 2208-2215.	1.1	25
72	Amplitude equations for reaction-diffusion systems with cross diffusion. Physical Review E, 2011, 84, 036216.	0.8	32

#	Article	IF	CITATIONS
73	Excitatory and inhibitory coupling in a one-dimensional array of Belousov-Zhabotinsky micro-oscillators: Theory. Physical Review E, 2011, 84, 066209.	0.8	31
74	Oligomerization Oscillations of <scp>l</scp> -Lactic Acid in Solution. Journal of Physical Chemistry A, 2011, 115, 14331-14339.	1.1	10
75	Pentanary Crossâ€Diffusion in Waterâ€inâ€Oil Microemulsions Loaded with Two Components of the Belousov–Zhabotinsky Reaction. Chemistry - A European Journal, 2011, 17, 2138-2145.	1.7	34
76	Tomography of Reaction-Diffusion Microemulsions Reveals Three-Dimensional Turing Patterns. Science, 2011, 331, 1309-1312.	6.0	136
77	Front propagation in the bromate–sulfite–ferrocyanide–aluminum (III) system: Autocatalytic front in a buffer system. Physica D: Nonlinear Phenomena, 2010, 239, 757-765.	1.3	6
78	Spontaneous oscillatory <i>in vitro</i> chiral conversion of simple carboxylic acids and its possible mechanism. Journal of Physical Organic Chemistry, 2010, 23, 1066-1073.	0.9	32
79	Rearrangement dynamics of fishbonelike Turing patterns generated by spatial periodic forcing. Physical Review E, 2010, 81, 066207.	0.8	4
80	Synchronization of Chemical Micro-oscillators. Journal of Physical Chemistry Letters, 2010, 1, 1241-1246.	2.1	129
81	Quaternary Cross-Diffusion in Water-in-Oil Microemulsions Loaded with a Component of the Belousovâ°'Zhabotinsky Reaction. Journal of Physical Chemistry B, 2010, 114, 8140-8146.	1.2	28
82	Periodic perturbation of one of two identical chemical oscillators coupled via inhibition. Physical Review E, 2010, 81, 066213.	0.8	8
83	Patterns in the Belousov–Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient. Physical Chemistry Chemical Physics, 2010, 12, 3656.	1.3	21
84	Pattern formation mechanisms in reaction-diffusion systems. International Journal of Developmental Biology, 2009, 53, 673-681.	0.3	53
85	Instabilities of a three-dimensional localized spot. Physical Review E, 2009, 80, 066204.	0.8	7
86	<i>In vitro</i> Chiral Conversion, Phase Separation, and Wave Propagation in Aged Profen Solutions. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1359-1372.	0.5	14
87	A model for jumping and bubble waves in the Belousov–Zhabotinsky-aerosol OT system. Journal of Chemical Physics, 2009, 131, .	1.2	48
88	Emergent or Just Complex?. Science, 2009, 325, 1632-1634.	6.0	33
89	Cross-diffusion and pattern formation in reaction–diffusion systems. Physical Chemistry Chemical Physics, 2009, 11, 897-912.	1.3	234
90	High-Frequency Oscillations in the Belousovâ^'Zhabotinsky Reaction. Journal of Physical Chemistry A, 2009, 113, 5644-5648.	1.1	41

#	Article	IF	CITATIONS
91	Temperature control of pattern formation in the Ru(bpy)32+-catalyzed BZ-AOT system. Physical Chemistry Chemical Physics, 2009, 11, 1581.	1.3	18
92	Diffusively Coupled Chemical Oscillators in a Microfluidic Assembly. Angewandte Chemie - International Edition, 2008, 47, 7753-7755.	7.2	136
93	Anatol Zhabotinsky (1938–2008). Nature, 2008, 455, 1053-1053.	13.7	4
94	Discontinuously propagating waves in the bathoferroin-catalyzed Belousov–Zhabotinsky reaction incorporated into a microemulsion. Journal of Chemical Physics, 2008, 128, 204508.	1.2	29
95	Coupled and forced patterns in reaction–diffusion systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 397-408.	1.6	21
96	Cross-Diffusion in a Water-in-Oil Microemulsion Loaded with Malonic Acid or Ferroin. Taylor Dispersion Method for Four-Component Systems. Journal of Physical Chemistry B, 2008, 112, 9058-9070.	1.2	37
97	Experimental and Model Investigation of the Oscillatory Transenantiomerization of <i>L</i> -α-Phenylalanine. Journal of Liquid Chromatography and Related Technologies, 2008, 31, 1986-2005.	0.5	31
98	Long-lasting dashed waves in a reactive microemulsion. Physical Chemistry Chemical Physics, 2008, 10, 1094.	1.3	14
99	Design and control of patterns in reaction-diffusion systems. Chaos, 2008, 18, 026107.	1.0	60
100	Feedback Analysis of Mechanisms for Chemical Oscillators. Advances in Chemical Physics, 2007, , 269-299.	0.3	19
101	CHEMISTRY: Can Droplets and Bubbles Think?. Science, 2007, 315, 775-776.	6.0	26
102	Localized patterns in reaction-diffusion systems. Chaos, 2007, 17, 037110.	1.0	114
103	Diversity in chemistry: catalyzing change. Nature Chemical Biology, 2007, 3, 299-302.	3.9	4
104	Jumping solitary waves in an autonomous reaction–diffusion system with subcritical wave instability. Physical Chemistry Chemical Physics, 2006, 8, 4647-4651.	1.3	19
105	Introduction: Self-organization in nonequilibrium chemical systems. Chaos, 2006, 16, 037101.	1.0	61
106	A Reaction–Diffusion Memory Device. Angewandte Chemie - International Edition, 2006, 45, 3087-3089.	7.2	95
107	Predicting complex biology with simple chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15727-15728.	3.3	16
108	Introduction: Engineering of self-organized nanostructures. Chaos, 2005, 15, 047501.	1.0	15

#	Article	IF	CITATIONS
109	Complex patterns in reactive microemulsions: Self-organized nanostructures?. Chaos, 2005, 15, 047510.	1.0	53
110	Wavelength Halving in a Transition between Standing Waves and Traveling Waves. Physical Review Letters, 2005, 95, 058302.	2.9	16
111	"Black spots―in a surfactant-rich Belousov–Zhabotinsky reaction dispersed in a water-in-oil microemulsion system. Journal of Chemical Physics, 2005, 122, 174706.	1.2	55
112	Stationary and Oscillatory Localized Patterns, and Subcritical Bifurcations. Physical Review Letters, 2004, 92, 128301.	2.9	88
113	Subcritical wave instability in reaction-diffusion systems. Journal of Chemical Physics, 2004, 121, 890-894.	1.2	10
114	Turing pattern formation in a two-layer system: Superposition and superlattice patterns. Physical Review E, 2004, 70, 046219.	0.8	31
115	New Heterogeneous Chemical Oscillators:Â Reduction of Manganese Species by Hypophosphite on a Pt Surface. Journal of Physical Chemistry B, 2004, 108, 7352-7358.	1.2	3
116	Nonlinear chemical dynamics. Dalton Transactions, 2003, , 1201-1217.	1.6	135
117	Dash Waves in a Reaction-Diffusion System. Physical Review Letters, 2003, 90, 098301.	2.9	50
118	Spatial Periodic Perturbation of Turing Pattern Development Using a Striped Mask. Journal of Physical Chemistry A, 2003, 107, 4428-4435.	1.1	20
119	Kinetics and Mechanism of the Chlorine Dioxide-Tetrathionate Reaction. Journal of Physical Chemistry A, 2003, 107, 10063-10068.	1.1	29
120	A Canard Mechanism for Localization in Systems of Globally Coupled Oscillators. SIAM Journal on Applied Mathematics, 2003, 63, 1998-2019.	0.8	41
121	Superlattice Turing Structures in a Photosensitive Reaction-Diffusion System. Physical Review Letters, 2003, 91, 058302.	2.9	64
122	Oscillatory Turing Patterns in Reaction-Diffusion Systems with Two Coupled Layers. Physical Review Letters, 2003, 90, 178303.	2.9	115
123	Diffusive instabilities in heterogeneous systems. Journal of Chemical Physics, 2003, 119, 7297-7307.	1.2	26
124	Canard phenomenon and localization of oscillations in the Belousov–Zhabotinsky reaction with global feedback. Journal of Chemical Physics, 2003, 119, 8824-8832.	1.2	41
125	Segmented spiral waves in a reaction-diffusion system. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14635-14638.	3.3	117
126	Packet Waves in a Reaction-Diffusion System. Physical Review Letters, 2002, 88, 088303.	2.9	87

#	Article	IF	CITATIONS
127	Front velocity in models with quadratic autocatalysis. Journal of Chemical Physics, 2002, 117, 8508-8514.	1.2	4
128	Chemical Wave Packet Propagation, Reflection, and Spreading. Journal of Physical Chemistry A, 2002, 106, 11676-11682.	1.1	14
129	Spatial Resonances and Superposition Patterns in a Reaction-Diffusion Model with Interacting Turing Modes. Physical Review Letters, 2002, 88, 208303.	2.9	111
130	Oscillations, Waves, and Patterns in Chemistry and Biology. ACS Symposium Series, 2002, , 103-116.	0.5	4
131	Pattern formation arising from interactions between Turing and wave instabilities. Journal of Chemical Physics, 2002, 117, 7259-7265.	1.2	103
132	A new chemical system for studying pattern formation: Bromate–hypophosphite–acetone–dual catalyst. Faraday Discussions, 2002, 120, 11-19.	1.6	18
133	Dynamics of kinks in one- and two-dimensional hyperbolic models with quasidiscrete nonlinearities. Physical Review E, 2001, 63, 066613.	0.8	2
134	Spatial Periodic Forcing of Turing Structures. Physical Review Letters, 2001, 87, 238301.	2.9	78
135	Inwardly Rotating Spiral Waves in a Reaction-Diffusion System. Science, 2001, 294, 835-837.	6.0	256
136	Pattern Formation in a Tunable Medium: The Belousov-Zhabotinsky Reaction in an Aerosol OT Microemulsion. Physical Review Letters, 2001, 87, 228301.	2.9	261
137	Resonant suppression of Turing patterns by periodic illumination. Physical Review E, 2001, 63, 026101.	0.8	68
138	Dynamics of one- and two-dimensional kinks in bistable reaction–diffusion equations with quasidiscrete sources of reaction. Chaos, 2001, 11, 833-842.	1.0	6
139	Turing pattern formation induced by spatially correlated noise. Physical Review E, 2001, 63, 056124.	0.8	55
140	Oscillatory Clusters in the Periodically Illuminated, Spatially Extended Belousov-Zhabotinsky Reaction. Physical Review Letters, 2001, 86, 552-555.	2.9	92
141	Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature, 2000, 406, 389-391.	13.7	279
142	Mechanistic studies of oscillatory copper(II) catalyzed oxidation reactions of sulfur compounds. Chemical Engineering Science, 2000, 55, 267-273.	1.9	30
143	Kinetics of Photoresponse of the Chlorine Dioxide-Iodine-Malonic Acid Reaction. Journal of Physical Chemistry A, 2000, 104, 5766-5769.	1.1	23
144	Control of Turing Structures by Periodic Illumination. Physical Review Letters, 1999, 83, 2950-2952.	2.9	92

#	Article	IF	CITATIONS
145	Frequency Control of an Oscillatory Reaction by Reversible Binding of an Autocatalyst. Physical Review Letters, 1999, 82, 1582-1585.	2.9	14
146	Control of the Chlorine Dioxideâ^'lodineâ^'Malonic Acid Oscillating Reaction by Illumination. Journal of the American Chemical Society, 1999, 121, 8065-8069.	6.6	87
147	Standing Waves in a Two-Dimensional Reactionâ^'Diffusion Model with the Short-Wave Instability. Journal of Physical Chemistry A, 1999, 103, 38-45.	1.1	20
148	Overview: Nonlinear dynamics related to polymeric systems. Chaos, 1999, 9, 255-259.	1.0	33
149	An Introduction to Nonlinear Chemical Dynamics. , 1998, , .		862
150	Oscillatory Chemical Reaction in a CSTR with Feedback Control of Flow Rate. Journal of Physical Chemistry A, 1997, 101, 5148-5154.	1.1	13
151	Taube's Influence on the Design of Oscillating Reactions. Advances in Chemistry Series, 1997, , 285-295.	0.6	2
152	Reply to "Mechanism of the Oscillatory Bromate Oxidation of Sulfite and Ferrocyanide in a CSTRâ€. The Journal of Physical Chemistry, 1996, 100, 16443-16443.	2.9	5
153	Bromateâ^'1,4-Cyclohexanedioneâ^'Ferroin Gas-Free Oscillating Reaction. 1. Basic Features and Crossing Wave Patterns in a Reactionâ^'Diffusion System without Gel. The Journal of Physical Chemistry, 1996, 100, 5393-5397.	2.9	62
154	Modulated Standing Waves in a Short Reactionâ^'Diffusion System. The Journal of Physical Chemistry, 1996, 100, 6604-6607.	2.9	9
155	Nonlinear Chemical Dynamics:Â Oscillations, Patterns, and Chaos. The Journal of Physical Chemistry, 1996, 100, 13132-13147.	2.9	443
156	Heterogeneous Sources of Target Patterns in Reactionâ^'Diffusion Systems. The Journal of Physical Chemistry, 1996, 100, 19017-19022.	2.9	24
157	Pattern formation arising from wave instability in a simple reactionâ€diffusion system. Journal of Chemical Physics, 1995, 103, 10306-10314.	1.2	96
158	The consequences of imperfect mixing in autocatalytic chemical and biological systems. Nature, 1995, 374, 321-327.	13.7	145
159	A coupled chemical burster: The chlorine dioxide–iodide reaction in two flow reactors. Journal of Chemical Physics, 1993, 98, 1149-1155.	1.2	40
160	Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states. The Journal of Physical Chemistry, 1993, 97, 7578-7584.	2.9	98
161	Bifurcation analysis of chemical reaction mechanisms. II. Hopf bifurcation analysis. Journal of Chemical Physics, 1993, 98, 2805-2822.	1.2	14
162	Symmetric patterns in linear arrays of coupled cells. Chaos, 1993, 3, 1-5.	1.0	33

#	Article	IF	CITATIONS
163	Excitability and bursting in the chlorine dioxide–iodide reaction in a forced open system. Journal of Chemical Physics, 1992, 97, 3265-3273.	1.2	17
164	Delay effects and differential delay equations in chemical kinetics. International Reviews in Physical Chemistry, 1992, 11, 135-160.	0.9	43
165	New systems for pattern formation studies. Physica A: Statistical Mechanics and Its Applications, 1992, 188, 26-33.	1.2	34
166	Systematic design of chemical oscillators. 69. A general model for pH oscillators. Journal of the American Chemical Society, 1991, 113, 1518-1522.	6.6	43
167	Nonlinear oscillations in chemical and biological systems. Physica D: Nonlinear Phenomena, 1991, 51, 152-160.	1.3	36
168	Geometric phase shifts in chemical oscillators. Nature, 1991, 349, 506-508.	13.7	21
169	Bifurcation analysis of chemical reaction mechanisms. I. Steady state bifurcation structure. Journal of Chemical Physics, 1991, 94, 3083-3095.	1.2	21
170	Differential delay equations in chemical kinetics. Nonlinear models: The crossâ€shaped phase diagram and the Oregonator. Journal of Chemical Physics, 1991, 95, 244-254.	1.2	56
171	Shaken, stirred — but not mixed. Nature, 1990, 346, 16-17.	13.7	28
172	Kinetics of cooperative ligand-lattice binding: Fast Monte Carlo integration. Biopolymers, 1990, 29, 543-547.	1.2	9
173	The irreversible binding of 2-site ligands to hetereogeneous polymers. Biopolymers, 1990, 29, 1331-1349.	1.2	3
174	Differential delay equations in chemical kinetics: Some simple linear model systems. Journal of Chemical Physics, 1990, 92, 1702-1712.	1.2	50
175	Systematic design of chemical oscillators. Part 65. Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid. Journal of the American Chemical Society, 1990, 112, 4606-4607.	6.6	104
176	Experimental and modeling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction. Journal of the American Chemical Society, 1990, 112, 9104-9110.	6.6	146
177	Experimental and theoretical studies of a coupled chemical oscillator: phase death, multistability and in-phase and out-of-phase entrainment. The Journal of Physical Chemistry, 1989, 93, 2496-2502.	2.9	219
178	Analysis of a fourâ€variable model of coupled chemical oscillators. Journal of Chemical Physics, 1989, 90, 3071-3080.	1.2	22
179	Stochastic behavior and stirring rate effects in the chlorite–iodide reaction. Journal of Chemical Physics, 1988, 89, 6925-6928.	1.2	41
180	Kinetics and Mechanism of Autocatalytic Nitric Acid Oxidations. Comments on Inorganic Chemistry, 1986, 5, 57-87.	3.0	17

#	Article	IF	CITATIONS
181	Kinetics and mechanism of the reaction between thiosulfate and chlorite ions at 90°C. International Journal of Chemical Kinetics, 1986, 18, 345-353.	1.0	7
182	Bifurcation analysis of a system of coupled chemical oscillators: Bromate-chlorite-iodine. Physica D: Nonlinear Phenomena, 1986, 19, 153-161.	1.3	22
183	Stirring and premixing effects in the oscillatory chlorite–iodide reaction. Journal of Chemical Physics, 1986, 85, 5733-5740.	1.2	37
184	Model study of synchronization and other phenomena in light perturbation of the Briggs-Rauscher reaction. International Journal of Chemical Kinetics, 1985, 17, 345-354.	1.0	13
185	Complex dynamical behavior in a new chemical oscillator: The chlorite-thiourea reaction in a CSTR. International Journal of Chemical Kinetics, 1985, 17, 429-439.	1.0	45
186	Autocatalysis and bistability in the reaction between nitric acid and thiocyanate. International Journal of Chemical Kinetics, 1985, 17, 601-612.	1.0	8
187	Physics, 1985, 82, 53-57.	1.2	50
188	Chemical chaos in the chlorite–thiosulfate reaction. Journal of Chemical Physics, 1984, 80, 3175-3178.	1.2	30
189	Kinetics of irreversible dissociation for proteins bound cooperatively to DNA. Biopolymers, 1984, 23, 1249-1259.	1.2	15
190	Systematic design of chemical oscillators. 15. A new type of bromate oscillator: the bromate-iodide reaction in a stirred-flow reactor. Journal of the American Chemical Society, 1983, 105, 2641-2643.	6.6	29
191	Systematic design of chemical oscillators. Part 13. Complex periodic and aperiodic oscillation in the chlorite-thiosulfate reaction. The Journal of Physical Chemistry, 1982, 86, 3907-3910.	2.9	107
192	Systematic design of chemical oscillators. Part 8. Batch oscillations and spatial wave patterns in chlorite oscillating systems. The Journal of Physical Chemistry, 1982, 86, 170-171.	2.9	147
193	Mechanistic study of oscillations and bistability in the Briggs-Rauscher reaction. Journal of the American Chemical Society, 1982, 104, 49-55.	6.6	117
194	A systematically designed homogeneous oscillating reaction: the arsenite-iodate-chlorite system. Journal of the American Chemical Society, 1981, 103, 2133-2134.	6.6	101
195	Kinetics of nucleic acid-large ligand interactions: Multiplet-closure approximations and matrix-iteration techniques. Biopolymers, 1981, 20, 1651-1669.	1.2	10
196	New family of homogeneous chemical oscillators: chlorite–iodate–substrate. Nature, 1981, 292, 816-818.	13.7	28
197	Kinetics of large-ligand binding to one-dimensional lattices: theory of irreversible binding. Biopolymers, 1979, 18, 765-788.	1.2	51
198	Compton profile and electron momentum distribution of water. Journal of Chemical Physics, 1974, 61, 4251-4257.	1.2	43

#	Article	IF	CITATIONS
199	Studies in molecular compton scattering. Philosophical Magazine and Journal, 1973, 27, 311-328.	1.8	8
200	Making Waves with DNA. Physics Magazine, 0, 8, .	0.1	1
201	Peptideâ€modulated pH rhythms. ChemPhysChem, 0, , .	1.0	3