List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon, 2019, 145, 433-444.	5.4	382
2	Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe ₃ O ₄ /C Composite Flowers. ACS Sustainable Chemistry and Engineering, 2018, 6, 12471-12480.	3.2	320
3	Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chemical Engineering Journal, 2020, 380, 122591.	6.6	225
4	Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Transactions, 2019, 48, 5193-5202.	1.6	224
5	Facile Synthesis of Porous Nickel/Carbon Composite Microspheres with Enhanced Electromagnetic Wave Absorption by Magnetic and Dielectric Losses. ACS Applied Materials & Interfaces, 2016, 8, 20258-20266.	4.0	187
6	Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Letters, 2021, 13, 135.	14.4	182
7	Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. Journal of Materials Chemistry C, 2019, 7, 1659-1669.	2.7	181
8	Synthesis of Nestlike ZnO Hierarchically Porous Structures and Analysis of Their Gas Sensing Properties. ACS Applied Materials & amp; Interfaces, 2012, 4, 817-825.	4.0	166
9	Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. Journal of Materials Chemistry, 2011, 21, 4314.	6.7	161
10	MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochimica Acta, 2019, 323, 134826.	2.6	154
11	Non-Magnetic Bimetallic MOF-Derived Porous Carbon-Wrapped TiO2/ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption. Nano-Micro Letters, 2021, 13, 75.	14.4	154
12	Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. Nano Energy, 2014, 9, 41-49.	8.2	146
13	High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH ₂ -UIO-66-Derived Porous ZrO ₂ /C. ACS Applied Materials & Interfaces, 2019, 11, 35959-35968.	4.0	145
14	Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. Nano-Micro Letters, 2022, 14, 59.	14.4	135
15	One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 2016, 109, 640-649.	5.4	125
16	Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties. Journal of Materials Chemistry, 2012, 22, 22160.	6.7	124
17	CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon, 2021, 172, 488-496.	5.4	113
18	Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochimica Acta, 2018, 261, 236-245.	2.6	102

#	Article	IF	CITATIONS
19	Nanostructured Antimony/carbon Composite Fibers as Anode Material for Lithium-ion Battery. Electrochimica Acta, 2015, 151, 214-221.	2.6	101
20	Electropolymerized polypyrrole nanocomposites with cobalt oxide coated on carbon paper for electrochemical energy storage. Polymer, 2015, 67, 192-199.	1.8	93
21	Metal sulfides based composites as promising efficient microwave absorption materials: A review. Journal of Materials Science and Technology, 2022, 104, 244-268.	5.6	90
22	Electromagnetic Field Absorbing Polypropylene Nanocomposites with Tuned Permittivity and Permeability by Nanoiron and Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 24784-24796.	1.5	86
23	Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Advanced Composites and Hybrid Materials, 2018, 1, 149-159.	9.9	86
24	MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon, 2022, 194, 257-266.	5.4	85
25	An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Engineered Science, 2018, , .	1.2	81
26	Strengthened Magnetoresistive Epoxy Nanocomposite Papers Derived from Synergistic Nanomagnetite arbon Nanofiber Nanohybrids. Advanced Materials, 2015, 27, 6277-6282.	11.1	79
27	Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. Polymer, 2014, 55, 4405-4419.	1.8	78
28	Facile Synthesis of Three-Dimensional Porous Co/MnO Composites Derived from Bimetal Oxides for Highly Efficient Electromagnetic Wave Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 8687-8695.	3.2	78
29	Self-Assembled ZnO/Co Hybrid Nanotubes Prepared by Electrospinning for Lightweight and High-Performance Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2018, 1, 5297-5306.	2.4	76
30	Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Physical Chemistry Chemical Physics, 2016, 18, 31542-31550.	1.3	73
31	Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Advanced Composites and Hybrid Materials, 2018, 1, 127-134.	9.9	73
32	Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Composites Part B: Engineering, 2020, 200, 108343.	5.9	73
33	Silica Doped Nanopolyaniline with Endured Electrochemical Energy Storage and the Magnetic Field Effects. Journal of Physical Chemistry C, 2013, 117, 13000-13010.	1.5	70
34	Bimetal oxide-derived flower-like heterogeneous Co/MnO@C composites with synergistic magnetic–dielectric attenuation for electromagnetic wave absorption. Journal of Materials Chemistry C, 2020, 8, 2451-2459.	2.7	69
35	Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Composites Part B: Engineering, 2022, 235, 109800.	5.9	67
36	Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 586, 613-620.	5.0	66

JIU-RONG LIU

#	Article	IF	CITATIONS
37	One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chemical Engineering Journal, 2021, 410, 128295.	6.6	65
38	ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chemical Engineering Journal, 2022, 450, 138011.	6.6	64
39	Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C, 2020, 8, 13169-13188.	2.7	63
40	Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption. Carbon, 2022, 191, 525-534.	5.4	63
41	Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon, 2017, 115, 503-514.	5.4	60
42	A MOF-derived ZrO ₂ /C nanocomposite for efficient electromagnetic wave absorption. Inorganic Chemistry Frontiers, 2020, 7, 385-393.	3.0	59
43	Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 763-772.	3.6	58
44	Porous ternary TiO ₂ /MnTiO ₃ @C hybrid microspheres as anode materials with enhanced electrochemical performances. Journal of Materials Chemistry A, 2015, 3, 23895-23904.	5.2	56
45	Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 20778-20790.	5.2	55
46	Fabrication of porous MnO microspheres with carbon coating for lithium ion battery application. CrystEngComm, 2014, 16, 1802.	1.3	53
47	Synthesis of Mesoporous SnO ₂ Spheres and Application in Gas Sensors. European Journal of Inorganic Chemistry, 2014, 2014, 863-869.	1.0	51
48	Enhancing Electrochemical Performances of TiO2 Porous Microspheres through Hybridizing with FeTiO3 and Nanocarbon. Electrochimica Acta, 2016, 190, 556-565.	2.6	50
49	Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106814.	3.8	50
50	Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Research, 2021, 14, 2512-2534.	5.8	49
51	Generation of Oxide Nanopatterns by Combining Self-Assembly of S-Layer Proteins and Area-Selective Atomic Layer Deposition. Journal of the American Chemical Society, 2008, 130, 16908-16913.	6.6	47
52	Facile synthesis of rod-like manganese molybdate crystallines with two-dimentional nanoflakes for supercapacitor application. Electrochimica Acta, 2017, 225, 605-613.	2.6	47
53	Creating oxygen vacancies on porous indium oxide nanospheres via metallic aluminum reduction for enhanced nitrogen dioxide detection at low temperature. Sensors and Actuators B: Chemical, 2020, 303, 127221.	4.0	47
54	Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chemical Engineering Journal, 2021, 417, 129350.	6.6	47

JIU-RONG LIU

#	Article	IF	CITATIONS
55	Synthesis of Au decorated SnO2 mesoporous spheres with enhanced gas sensing performance. RSC Advances, 2013, 3, 19002.	1.7	46
56	Enhanced Electrochemical Performance of Zn-Doped Fe3O4 with Carbon Coating. Electrochimica Acta, 2014, 117, 230-238.	2.6	45
57	Enhanced electrochemical performances of MoO ₂ nanoparticles composited with carbon nanotubes for lithium-ion battery anodes. RSC Advances, 2015, 5, 87286-87294.	1.7	43
58	Li-Ion Storage Performance of MnO Nanoparticles Coated with Nitrogen-Doped Carbon Derived from Different Carbon Sources. Electrochimica Acta, 2014, 146, 249-256.	2.6	42
59	State-of-the-art advancements in photo-assisted CO ₂ hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020, 8, 24868-24894.	5.2	40
60	High-performance microwave absorption of MOFâ€derived Co3O4@N-doped carbon anchored on carbon foam. Journal of Colloid and Interface Science, 2021, 602, 197-206.	5.0	40
61	Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Advances, 2015, 5, 34566-34571.	1.7	39
62	Controlled sulfidation towards achieving core-shell 1D-NiMoO4 @ 2D-NiMoS4 architecture for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 804, 27-34.	2.8	39
63	Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance. Journal of Materials Chemistry A, 2016, 4, 9881-9889.	5.2	38
64	Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New Journal of Chemistry, 2019, 43, 16546-16554.	1.4	38
65	Synthesis of MOF-derived Fe7S8/C rod-like composites by controlled proportion of carbon for highly efficient electromagnetic wave absorption. Composites Part A: Applied Science and Manufacturing, 2021, 142, 106246.	3.8	38
66	High response and selectivity of platinum modified tin oxide porous spheres for nitrogen dioxide gas sensing at low temperature. Sensors and Actuators B: Chemical, 2018, 257, 427-435.	4.0	37
67	Synthesis and characterization of SnO2/polyaniline nanocomposites by sol–gel technique and microemulsion polymerization. Synthetic Metals, 2012, 162, 2183-2187.	2.1	34
68	Template-free synthesis of Co nanoporous structures and their electromagnetic wave absorption properties. Materials Letters, 2012, 78, 69-71.	1.3	34
69	Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Advances, 2015, 5, 7237-7244.	1.7	34
70	One-pot synthesis and gas sensing properties of ZnO mesoporous architectures. Sensors and Actuators B: Chemical, 2013, 184, 85-92.	4.0	33
71	Facile synthesis of MnO and nitrogen-doped carbon nanocomposites as anode material for lithium ion battery. Materials Letters, 2014, 136, 289-291.	1.3	32
72	Electromagnetic wave absorption properties of Fe3O4 octahedral nanocrystallines in gigahertz range. Applied Physics A: Materials Science and Processing, 2011, 105, 351-354.	1.1	31

#	Article	IF	CITATIONS
73	Carbon Coating and Zn 2+ Doping of Magnetite Nanorods for Enhanced Electrochemical Energy Storage. Electrochimica Acta, 2014, 148, 118-126.	2.6	31
74	Fe ₃ O ₄ nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability. New Journal of Chemistry, 2017, 41, 6241-6250.	1.4	31
75	Fabricating a Mn ₃ O ₄ /Ni(OH) ₂ Nanocomposite by Water-Boiling Treatment for Use in Asymmetric Supercapacitors as an Electrode Material. ACS Sustainable Chemistry and Engineering, 2018, 6, 15688-15696.	3.2	30
76	Mesoporous Fe-doped In2O3 nanorods derived from metal organic frameworks for enhanced nitrogen dioxide detection at low temperature. Ceramics International, 2020, 46, 20385-20394.	2.3	30
77	Flower-like Hydroxyfluoride-Sensing Platform toward NO ₂ Detection. ACS Applied Materials & Interfaces, 2021, 13, 26278-26287.	4.0	30
78	Growth and properties of UV nonlinear optical crystal ZnCd(SCN)4. Materials Research Bulletin, 2001, 36, 1287-1299.	2.7	29
79	Facile synthesis of porous Fe ₂ TiO ₅ microparticulates serving as anode material with enhanced electrochemical performances. RSC Advances, 2015, 5, 103767-103775.	1.7	29
80	Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 24083-24090.	5.2	29
81	Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceramics International, 2020, 46, 4754-4761.	2.3	29
82	Preparation of zirconia xerogels and ceramics by sol–gel method and the analysis of their thermal behavior. Thermochimica Acta, 2001, 376, 77-82.	1.2	28
83	Enhancing the reversible capacity and rate performance of anatase TiO2 by combined coating and compositing with N-doped carbon. Journal of Power Sources, 2015, 273, 472-478.	4.0	28
84	High-permittivity Sb2S3 single-crystal nanorods as a brand-new choice for electromagnetic wave absorption. Science China Materials, 2021, 64, 1733-1741.	3.5	28
85	Engineering the surface structure of porous indium oxide hexagonal nanotubes with antimony trioxide for highly-efficient nitrogen dioxide detection at low temperature. Applied Surface Science, 2019, 484, 853-863.	3.1	27
86	Novel ternary Co3O4/CeO2/CNTs composites for high-performance broadband electromagnetic wave absorption. Journal of Alloys and Compounds, 2021, 864, 158141.	2.8	27
87	Growth and characterization of a novel UV nonlinear optical crystal: [MnHg(SCN)4(H2O)2]·2C4H9NO. Journal of Crystal Growth, 2002, 234, 469-479.	0.7	26
88	Facile synthesis and superior ethyl acetate sensing performance of Au decorated ZnO flower-like architectures. Ceramics International, 2017, 43, 5053-5060.	2.3	26
89	Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts, 2019, 9, 658.	1.6	26
90	Platinumâ ´´Copper Bimetallic Nanoparticles Supported on TiO2 as Catalysts for Photoâ ´`thermal Catalytic Toluene Combustion. ACS Applied Nano Materials, 2022, 5, 1845-1854.	2.4	26

#	Article	IF	CITATIONS
91	Synergistic photodynamic/photothermal bacterial inactivation over heterogeneous quaternized chitosan/silver/cobalt phosphide nanocomposites. Journal of Colloid and Interface Science, 2022, 616, 304-315.	5.0	25
92	Crystal growth and physical properties of UV nonlinear optical crystal zinc cadmium thiocyanate, ZnCd(SCN)4. Chemical Physics Letters, 2001, 346, 393-406.	1.2	24
93	Fabrication of silica-supported ZrO2 mesoporous fibers with high thermal stability by sol–gel method through a controlled hydrolysis–condensation process. Microporous and Mesoporous Materials, 2010, 130, 189-196.	2.2	23
94	Synthesis and characterization of polypyrrole/Au nanocomposites by microemulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 397, 8-11.	2.3	23
95	Polypyrrole-coated Fe2O3 nanotubes constructed from nanoneedles as high-performance anodes for aqueous asymmetric supercapacitors. Dalton Transactions, 2020, 49, 9701-9709.	1.6	21
96	Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. Journal of Alloys and Compounds, 2020, 834, 155209.	2.8	21
97	Nanocelluloseâ€assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3, 582-607.	6.4	21
98	Rechargeable Co ₃ O ₄ porous nanoflake carbon nanotube nanocomposite lithium-ion battery anodes with enhanced energy performances. RSC Advances, 2015, 5, 46509-46516.	1.7	20
99	Enhanced supercapacitive performance of the CoFe ₂ O ₄ /CoFe ₂ S ₄ composite nanoflake array induced by surface sulfidation. New Journal of Chemistry, 2019, 43, 13491-13498.	1.4	20
100	Growth and properties of UV nonlinear optical crystal ZnCd(SCN)4. Materials Research Bulletin, 2003, 38, 1269-1280.	2.7	19
101	Fabrication of monodispersed nickel flower-like architectures via a solvent-thermal process and analysis of their magnetic and electromagnetic properties. Journal of Solid State Chemistry, 2011, 184, 2994-3001.	1.4	18
102	High response to nitrogen dioxide derived from antimony peroxide modified tin oxide porous nanocomposites serving as gas sensing material. Sensors and Actuators B: Chemical, 2017, 247, 216-223.	4.0	18
103	Construction of Ni-Zn bimetal sulfides Heterostructured-hybrids for High-performance electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 606, 1410-1420.	5.0	17
104	H2S sensing material Pt-WO3 nanorods with excellent comprehensive performance. Journal of Alloys and Compounds, 2022, 900, 163398.	2.8	17
105	Enhanced ppb-level formaldehyde sensing performance over Pt deposited SnO2 nanospheres. Journal of Alloys and Compounds, 2022, 899, 163230.	2.8	16
106	Advances and Perspectives of Photopromoted CO ₂ Hydrogenation for Methane Production: Catalyst Development and Mechanism Investigations. Energy & Fuels, 2022, 36, 6711-6735.	2.5	16
107	Alpha-Fe2O3@ZnO heterostructured nanotubes for gas sensing. Materials Letters, 2012, 76, 159-161.	1.3	15
108	Porous Fe Hollow Structures with Optimized Impedance Matching as Highly Efficient, Ultrathin, and Lightweight Electromagnetic Wave Absorbers. Industrial & Engineering Chemistry Research, 2019, 58, 6446-6455.	1.8	15

#	Article	IF	CITATIONS
109	Novel synthesis of MoO3/Mo4O11/MoO2 heterogeneous nanobelts for wideband electromagnetic wave absorption. Journal of Alloys and Compounds, 2020, 817, 153309.	2.8	15
110	Encapsulating Ir nanoparticles into UiO-66 for photo-thermal catalytic CO ₂ methanation under ambient pressure. Journal of Materials Chemistry A, 2022, 10, 12157-12167.	5.2	15
111	Enhanced electrochemical performance of barium hexaferrite nanoplates by Zn ²⁺ doping serving as anode materials. RSC Advances, 2015, 5, 70749-70757.	1.7	14
112	Synthesis of strontium hexaferrite nanoplates and the enhancement of their electrochemical performance by Zn ²⁺ doping for high-rate and long-life lithium-ion batteries. New Journal of Chemistry, 2017, 41, 6427-6435.	1.4	14
113	<i>In situ</i> transformation of ZIF-67 into hollow Co ₂ V ₂ O ₇ nanocages on graphene as a high-performance cathode for aqueous asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 3646-3656.	3.0	14
114	Self-supported construction of three-dimensional NiCo2O4 hierarchical nanoneedles for high-performance microwave absorption. Ceramics International, 2021, 47, 34289-34296.	2.3	13
115	Synthesis of hollow Fe3O4 at ZnO at anatase TiO2 core–shell structured spheres. Ceramics International, 2012, 38, 6899-6902.	2.3	12
116	Fabrication of bulk macroporous zirconia by combining sol–gel with calcination processes. Ceramics International, 2011, 37, 2549-2553.	2.3	11
117	Strong luminescence of pure and yttria doped zirconia xerogels. Journal of Materials Science Letters, 2001, 20, 1565-1567.	0.5	10
118	Flakes-assembled porous ZnO/Ni hybrid nanotubes for efficient electromagnetic absorption. Journal of Alloys and Compounds, 2021, 881, 160575.	2.8	10
119	Preparation and characterization of silica/polypyrrole coreâ€shell colloidal particles in the presence of ethanol as the cosolvent. Journal of Applied Polymer Science, 2012, 123, 3270-3274.	1.3	9
120	Boosting the electrochemical performance of Li ₄ Ti ₅ O ₁₂ through nitrogenâ€doped carbon coating. Applied Organometallic Chemistry, 2019, 33, e4957.	1.7	9
121	Characteristics of Hf-silicate thin films synthesized by plasma enhanced atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1251-1257.	0.9	7
122	Rapid, Lowâ€Temperature Synthesis of βâ€SiC Nanowires from Si and Graphite. Journal of the American Ceramic Society, 2010, 93, 2415-2418.	1.9	7
123	Preparation of polyaniline coated polystyreneâ€poly(styreneâ€coâ€sodium 4â€styrenesulfonate) microparticles and the further fabrication of hollow polyaniline microspheres. Journal of Applied Polymer Science, 2012, 126, 870-876.	1.3	7
124	Optimizing the Supercapacitive Performance and Cyclability of Ni(OH) 2 by Combining with CuO Concomitant with Mutual Doping. ChemElectroChem, 2019, 6, 4831-4841.	1.7	6
125	p-Ni0.9Zn0.1O/n-ZnO nanosheets heterostructured composite fiber as high-performance H2S detection platform. Sensors and Actuators B: Chemical, 2022, 359, 131560.	4.0	5
126	Single-Molecule Detection of Acetylcholine by Translating the Neuronal Signal to a Single Distinct Electronic Peak. ACS Applied Bio Materials, 2020, 3, 6888-6896.	2.3	4