Michael T Raissig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science, 2017, 355, 1215-1218.	12.6	198
2	Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis. Cell, 2011, 145, 707-719.	28.9	193
3	Form, development and function of grass stomata. Plant Journal, 2020, 101, 780-799.	5.7	143
4	Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8326-8331.	7.1	142
5	Regulation and Flexibility of Genomic Imprinting during Seed Development. Plant Cell, 2011, 23, 16-26.	6.6	124
6	Genomic Imprinting in the Arabidopsis Embryo Is Partly Regulated by PRC2. PLoS Genetics, 2013, 9, e1003862.	3.5	63
7	Epigenetic regulation and reprogramming during gamete formation in plants. Current Opinion in Genetics and Development, 2011, 21, 124-133.	3.3	58
8	The <i><scp>P</scp>olycomb</i> group protein <scp>MEDEA</scp> and the <scp>DNA</scp> methyltransferase <scp>MET</scp> 1 interact to repress autonomous endosperm development in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 776-787.	5.7	49
9	Identification of a DNA methylation-independent imprinting control region at the <i>Arabidopsis MEDEA</i> locus. Genes and Development, 2012, 26, 1837-1850.	5.9	48
10	SNP-Ratio Mapping (SRM): Identifying Lethal Alleles and Mutations in Complex Genetic Backgrounds by Next-Generation Sequencing. Genetics, 2012, 191, 1381-1386.	2.9	46
11	Morphology made for movement: formation of diverse stomatal guard cells. Current Opinion in Plant Biology, 2021, 63, 102090.	7.1	21
12	Parental contributions to the transcriptome of early plant embryos. Current Opinion in Genetics and Development, 2013, 23, 72-74.	3.3	16
13	Efficient and Rapid Isolation of Early-stage Embryos from Arabidopsis thaliana Seeds. Journal of Visualized Experiments, 2013, , .	0.3	13
14	Consistent Reanalysis of Genome-wide Imprinting Studies in Plants Using Generalized Linear Models Increases Concordance across Datasets. Scientific Reports, 2019, 9, 1320.	3.3	12
15	The wild grass Brachypodium distachyon as a developmental model system. Current Topics in Developmental Biology, 2022, 147, 33-71.	2.2	12
16	Quantitative effects of environmental variation on stomatal anatomy and gas exchange in a grass model. Quantitative Plant Biology, 2022, 3, .	2.0	9
17	Seed Sterilization and Seedling Growth on Plates in the Model Grass Brachypodium distachyon. Bio-protocol, 2020, 10, .	0.4	4
18	Editorial: Linking Stomatal Development and Physiology: From Stomatal Models to Non-model Species and Crops. Frontiers in Plant Science, 2021, 12, 743964.	3.6	1