Sunilkumar Khandavalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rheological Investigation on the Microstructure of Fuel Cell Catalyst Inks. ACS Applied Materials & Interfaces, 2018, 10, 43610-43622.	8.0	96
2	Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application. ACS Applied Materials & amp; Interfaces, 2019, 11, 46953-46964.	8.0	80
3	Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheologica Acta, 2015, 54, 601-618.	2.4	64
4	Utilizing ink composition to tune bulk-electrode gas transport, performance, and operational robustness for a Fe–N–C catalyst in polymer electrolyte fuel cell. Nano Energy, 2020, 75, 104943.	16.0	60
5	Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution. Journal of Rheology, 2014, 58, 411-431.	2.6	57
6	Investigation of the Microstructure and Rheology of Iridium Oxide Catalyst Inks for Low-Temperature Polymer Electrolyte Membrane Water Electrolyzers. ACS Applied Materials & Interfaces, 2019, 11, 45068-45079.	8.0	34
7	The effect of shearâ€thickening on the stability of slotâ€die coating. AICHE Journal, 2016, 62, 4536-4547.	3.6	32
8	Ink transfer of non-Newtonian fluids from an idealized gravure cell: The effect of shear and extensional deformation. Journal of Non-Newtonian Fluid Mechanics, 2017, 243, 16-26.	2.4	28
9	Effect of Dispersion Medium Composition and Ionomer Concentration on the Microstructure and Rheology of Fe–N–C Platinum Group Metal-free Catalyst Inks for Polymer Electrolyte Membrane Fuel Cells. Langmuir, 2020, 36, 12247-12260.	3.5	27
10	A comparison of linear and branched wormlike micelles using large amplitude oscillatory shear and orthogonal superposition rheology. Journal of Rheology, 2016, 60, 1331-1346.	2.6	24
11	Toward Optimizing Electrospun Nanofiber Fuel Cell Catalyst Layers: Microstructure and Pt Accessibility. ACS Applied Energy Materials, 2021, 4, 3341-3351.	5.1	21
12	The effect of shear-thickening on liquid transfer from an idealized gravure cell. Journal of Non-Newtonian Fluid Mechanics, 2015, 221, 55-65.	2.4	17
13	Toward Optimizing Electrospun Nanofiber Fuel Cell Catalyst Layers: Polymer–Particle Interactions and Spinnability. ACS Applied Polymer Materials, 2021, 3, 2374-2384.	4.4	16
14	Roll-to-roll fabrication of hierarchical superhydrophobic surfaces. Applied Physics Letters, 2018, 113, .	3.3	13