Jaswinder Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702346/publications.pdf

Version: 2024-02-01

201575 206029 2,580 64 27 48 citations h-index g-index papers 65 65 65 2320 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248
2	Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research, 2020, 27, 1319-1333.	2.7	246
3	Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, 2018, 252, 172-179.	4.8	150
4	Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresource Technology, 2011, 102, 7941-7945.	4.8	147
5	Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Biotechnology, 2015, 14, 137-159.	3.9	141
6	Earthworms, pesticides and sustainable agriculture: a review. Environmental Science and Pollution Research, 2016, 23, 8227-8243.	2.7	134
7	Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresource Technology, 2010, 101, 8192-8198.	4.8	100
8	Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicology and Environmental Safety, 2010, 73, 430-435.	2.9	100
9	Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. SpringerPlus, 2015, 4, 11.	1.2	86
10	Earthworm as ecological engineers to change the physico-chemical properties of soil: Soil vs vermicast. Ecological Engineering, 2016, 90, 1-5.	1.6	70
11	Instrumental characterization of organic wastes for evaluation of vermicompost maturity. Journal of Analytical Science and Technology, 2017, 8, .	1.0	67
12	Earthworms as Organic Waste Managers and Biofertilizer Producers. Waste and Biomass Valorization, 2018, 9, 1073-1086.	1.8	67
13	Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustainable Environment Research, 2018, 28, 171-178.	2.1	59
14	Effect on Growth of Earthworm and Chemical Parameters During Vermicomposting of Pressmud Sludge Mixed with Cattle Dung Mixture. Procedia Environmental Sciences, 2016, 35, 425-434.	1.3	58
15	Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environmental Science and Pollution Research, 2013, 20, 5975-5982.	2.7	52
16	Genotoxic assessment and optimization of pressmud with the help of exotic earthworm Eisenia fetida. Environmental Science and Pollution Research, 2014, 21, 8112-8123.	2.7	51
17	Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: A field experiment. Catena, 2018, 160, 185-193.	2.2	48
18	Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test. Environmental Science and Pollution Research, 2015, 22, 11236-11254.	2.7	39

#	Article	IF	CITATIONS
19	Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: a field study. International Journal of Recycling of Organic Waste in Agriculture, 2013, 2, 1.	2.0	38
20	Bioremediation of Distillery Sludge into Soil-Enriching Material Through Vermicomposting with the Help of Eisenia fetida. Applied Biochemistry and Biotechnology, 2014, 174, 1403-1419.	1.4	37
21	Phytoremediation of Heavy Metals Using Cotton Plant: A Field Analysis. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 637-643.	1.3	35
22	Climate change effects on earthworms - a review. Soil Organisms, 2019, 91, 114-138.	2.2	35
23	Physico-chemical Properties and Heavy Metal Contents of Soils and Kharif Crops of Punjab, India. Procedia Environmental Sciences, 2016, 35, 801-808.	1.3	34
24	Effect of abiotic factors on the distribution of earthworms in different land use patterns. Journal of Basic and Applied Zoology, 2016, 74, 41-50.	0.4	33
25	Vermicompost and vermiwash as supplement to improve seedling, plantÂgrowth and yield in Linum usitassimum L. for organic agriculture. International Journal of Recycling of Organic Waste in Agriculture, 2017, 6, 203-218.	2.0	32
26	Amelioration and degradation of pressmud and bagasse wastes using vermitechnology. Bioresource Technology, 2017, 243, 1097-1104.	4.8	31
27	Soil properties changes earthworm diversity indices in different agro-ecosystem. BMC Ecology, 2020, 20, 27.	3.0	30
28	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
29	Vermicompost as a strong buffer and natural adsorbent for reducing transition metals, BOD, COD from industrial effluent. Ecological Engineering, 2015, 74, 13-19.	1.6	28
30	Avoidance behavior of Eisenia fetida and Metaphire posthuma towards two different pesticides, acephate and atrazine. Chemosphere, 2021, 278, 130476.	4.2	25
31	Ecological risk assessment of metals in roadside agricultural soils: A modified approach. Human and Ecological Risk Assessment (HERA), 2018, 24, 186-201.	1.7	23
32	Analysis of soil characteristics of different land uses and metal bioaccumulation in wheat grown around rivers: possible human health risk assessment. Environment, Development and Sustainability, 2017, 19, 571-588.	2.7	22
33	Extraction of earthworm from soil by different sampling methods: a review. Environment, Development and Sustainability, 2016, 18, 1521-1539.	2.7	21
34	Grassland management effects on earthworm communities under ambient and future climatic conditions. European Journal of Soil Science, 2021, 72, 343-355.	1.8	20
35	Vermicompost acts as bio-modulator for plants under stress and non-stress conditions. Environment, Development and Sustainability, 2023, 25, 2006-2057.	2.7	20
36	Cadmium Accumulation Potential of Brassica Species Grown in Metal Spiked Loamy Sand Soil. Soil and Sediment Contamination, 2020, 29, 638-649.	1.1	17

#	Article	IF	CITATIONS
37	Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon, 2021, 7, e08122.	1.4	17
38	Earthworms Converting Milk Processing Industry Sludge into Biomanure. The Open Waste Management Journal, 2017, 10, 30-40.	2.8	16
39	Potential ecological risks of metal(loid)s in riverine floodplain soils. Ecotoxicology and Environmental Safety, 2018, 164, 722-731.	2.9	15
40	Potential carcinogenic and non-carcinogenic health hazards of metal(loid)s in food grains. Environmental Science and Pollution Research, 2020, 27, 17032-17042.	2.7	15
41	Role of Earthworm in Sustainable Agriculture. , 2018, , 83-122.		13
42	Genotoxicity reduction in bagasse waste of sugar industry by earthworm technology. SpringerPlus, 2016, 5, 1186.	1.2	12
43	Modulatory role of vermicompost and vermiwash on growth, yield and nutritional profiling of Linum usitatissimum L. (Linseed): a field study. Environmental Science and Pollution Research, 2019, 26, 3006-3018.	2.7	11
44	Assessment of heavy metal contamination and its effect on earthworms in different types of soils. International Journal of Environmental Science and Technology, 2022, 19, 4337-4350.	1.8	11
45	Endophytic bacteria in xenobiotic degradation. , 2020, , 125-156.		10
46	Comparing the nutrient changes, heavy metals, and genotoxicity assessment before and after vermicomposting of thermal fly ash using Eisenia fetida. Environmental Science and Pollution Research, 2021, 28, 48154-48170.	2.7	10
47	Cadmium phytoremediation potential of Brassica genotypes grown in Cd spiked Loamy sand soils: Accumulation and tolerance. Chemosphere, 2022, 302, 134842.	4.2	10
48	Conventional farming reduces the activity of earthworms: Assessment of genotoxicity test of soil and vermicast. Agriculture and Natural Resources, 2018, 52, 366-370.	0.4	9
49	Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review. Agriculture and Natural Resources, 2017, 51, 325-337.	0.4	8
50	Vermiremediation and detoxification of sugar beet pulp waste using Allium cepa bioassay. Energy, Ecology and Environment, 2018, 3, 242-249.	1.9	7
51	Eco-friendly method for the extraction of earthworms: Comparative account of formalin, AITC and Allium cepa as extractant. Applied Soil Ecology, 2018, 124, 141-145.	2.1	6
52	Potential Ecological Impacts of Heavy Metals in Sediments of Industrially Contaminated Perennial Drain of India. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 949-958.	1.3	6
53	Management of Sugar Industrial Wastes through Vermitechnology. International Letters of Natural Sciences, 0, 55, 35-43.	1.0	6
54	Diversity and Abundance of Earthworms in Different Landuse Patterns: Relation with Soil Properties. Asian Journal of Biological and Life Sciences, 2020, 9 , $111-118$.	0.1	5

#	Article	IF	CITATIONS
55	Characterization of vermicompost of coconut husk mixed with cattle dung: physicochemical properties, SEM, and FT-IR analysis. Environmental Science and Pollution Research, 2022, 29, 87790-87801.	2.7	5
56	Environmental Influence of Soil toward Effective Vermicomposting. , 0, , .		3
57	Earthworm gut passage reinforces land-use effects on soil microbial communities across climate treatments. Applied Soil Ecology, 2021, 164, 103919.	2.1	3
58	Treatment of Wastewater by Vermifiltration Integrated with Plants. , 2020, , 35-51.		2
59	First Report of the Earthworm <i>Pontoscolex corethrurus </i> (Müller, 1857) from Punjab, India. International Letters of Natural Sciences, 0, 68, 1-8.	1.0	2
60	Nutrient recovery from pigeon dropping by using exotic earthworm Eisenia fetida. Sustainable Chemistry and Pharmacy, 2019, 12, 100126.	1.6	1
61	Assessment of Earthworm Community Structure in Industrial and Non-industrial Soils. Asian Journal of Biological and Life Sciences, 2021, 10, 183-190.	0.1	1
62	Aquatic Plants as Effective Phytoremediators of Heavy Metals., 2020,, 189-199.		1
63	Earthworm Community Structures in Three Wetland Ecosystems with Reference to Soil Physicochemical Properties. Proceedings of the Zoological Society, 2022, 75, 231-241.	0.4	1
64	Earthworm Communities and Soil Structural Properties. , 2020, , 333-350.		0