Josephine Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702332/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine, 2010, 98, 278-284.	2.6	841
2	Head size, age and gender adjustment in MRI studies: a necessary nuisance?. Neurolmage, 2010, 53, 1244-1255.	2.1	421
3	Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance. NeuroImage, 2015, 104, 366-372.	2.1	371
4	A meta-analysis of hippocampal atrophy rates in Alzheimer's disease. Neurobiology of Aging, 2009, 30, 1711-1723.	1.5	294
5	Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurology, The, 2006, 5, 828-834.	4.9	292
6	Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. NeuroImage, 2010, 51, 1345-1359.	2.1	224
7	Accuracy of dementia diagnosisa direct comparison between radiologists and a computerized method. Brain, 2008, 131, 2969-2974.	3.7	222
8	STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation. Medical Image Analysis, 2013, 17, 671-684.	7.0	215
9	An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease. Neurolmage, 2012, 60, 1880-1889.	2.1	192
10	Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study. Lancet Neurology, The, 2019, 18, 942-952.	4.9	178
11	Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1466-1476.	1.5	172
12	The EADCâ€ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity. Alzheimer's and Dementia, 2015, 11, 111-125.	0.4	162
13	Brain MAPS: An automated, accurate and robust brain extraction technique using a template library. NeuroImage, 2011, 55, 1091-1108.	2.1	152
14	Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1â€42. Annals of Neurology, 2010, 68, 825-834.	2.8	150
15	3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry. NeuroImage, 2008, 41, 19-34.	2.1	149
16	Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimer's and Dementia, 2015, 11, 740-756.	0.4	142
17	Measurements of the Amygdala and Hippocampus in Pathologically Confirmed Alzheimer Disease and Frontotemporal Lobar Degeneration. Archives of Neurology, 2006, 63, 1434.	4.9	139
18	Cerebral atrophy in mild cognitive impairment and Alzheimer disease. Neurology, 2013, 80, 648-654.	1.5	133

#	Article	IF	CITATIONS
19	Differential Regional Atrophy of the Cingulate Gyrus in Alzheimer Disease: A Volumetric MRI Study. Cerebral Cortex, 2005, 16, 1701-1708.	1.6	131
20	Bayesian Model Selection for Pathological Neuroimaging Data Applied to White Matter Lesion Segmentation. IEEE Transactions on Medical Imaging, 2015, 34, 2079-2102.	5.4	123
21	Delphi definition of the EADCâ€ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance. Alzheimer's and Dementia, 2015, 11, 126-138.	0.4	123
22	Volumetric MRI and cognitive measures in Alzheimer disease. Journal of Neurology, 2008, 255, 567-574.	1.8	121
23	The progression of regional atrophy in premanifest and early Huntington's disease: a longitudinal voxel-based morphometry study. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 756-763.	0.9	105
24	A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. Neurolmage, 2008, 40, 1655-1671.	2.1	104
25	Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. NeuroImage, 2004, 23, 574-581.	2.1	101
26	Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations. European Radiology, 2010, 20, 674-682.	2.3	100
27	Atrophy patterns in Alzheimer's disease and semantic dementia: A comparison of FreeSurfer and manual volumetric measurements. NeuroImage, 2010, 49, 2264-2274.	2.1	97
28	<i>R47H TREM2</i> variant increases risk of typical earlyâ€onset Alzheimer's disease but not of prion or frontotemporal dementia. Alzheimer's and Dementia, 2014, 10, 602.	0.4	94
29	Alzheimer's disease first symptoms are age dependent: Evidence fromÂthe NACC dataset. Alzheimer's and Dementia, 2015, 11, 1349-1357.	0.4	93
30	Onset and Progression of Pathologic Atrophy in Huntington Disease: A Longitudinal MR Imaging Study. American Journal of Neuroradiology, 2010, 31, 1036-1041.	1.2	90
31	Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease. European Radiology, 2009, 19, 2826-2833.	2.3	88
32	Reduced Cortical Thickness in the Posterior Cingulate Gyrus is Characteristic of Both Typical and Atypical Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, 587-598.	1.2	87
33	Does Alzheimer's Disease Affect Hippocampal Asymmetry? Evidence from a Cross-Sectional and Longitudinal Volumetric MRI Study. Dementia and Geriatric Cognitive Disorders, 2005, 19, 338-344.	0.7	83
34	Early-onset Alzheimer disease clinical variants. Neurology, 2012, 79, 80-84.	1.5	77
35	Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer's disease. Neurobiology of Aging, 2012, 33, 627.e1-627.e12.	1.5	74
36	Atrophy rates of the cingulate gyrus and hippocampus in AD and FTLD. Neurobiology of Aging, 2007, 28, 20-28.	1.5	72

#	Article	IF	CITATIONS
37	Basic Visual Function and Cortical Thickness Patterns in Posterior Cortical Atrophy. Cerebral Cortex, 2011, 21, 2122-2132.	1.6	69
38	Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls. Neurobiology of Aging, 2013, 34, 1996-2002.	1.5	66
39	White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus, 2017, 27, 249-262.	0.9	62
40	Application of Automated Medial Temporal Lobe Atrophy Scale to Alzheimer Disease. Archives of Neurology, 2007, 64, 849.	4.9	60
41	Detailed volumetric analysis of the hypothalamus in behavioral variant frontotemporal dementia. Journal of Neurology, 2015, 262, 2635-2642.	1.8	60
42	The structural involvement of the cingulate cortex in premanifest and early Huntington's disease. Movement Disorders, 2011, 26, 1684-1690.	2.2	56
43	Associations Between Vascular Risk Across Adulthood and Brain Pathology in Late Life. JAMA Neurology, 2020, 77, 175.	4.5	55
44	Comparison of phantom and registration scaling corrections using the ADNI cohort. NeuroImage, 2009, 47, 1506-1513.	2.1	54
45	APOE ε4 Is Associated with Disproportionate Progressive Hippocampal Atrophy in AD. PLoS ONE, 2014, 9, e97608.	1.1	53
46	Automated quantification of caudate atrophy by local registration of serial MRI: Evaluation and application in Huntington's disease. NeuroImage, 2009, 47, 1659-1665.	2.1	46
47	Mapping the progression of progranulin-associated frontotemporal lobar degeneration. Nature Clinical Practice Neurology, 2008, 4, 455-460.	2.7	45
48	Global gray matter changes in posterior cortical atrophy: A serial imaging study. Alzheimer's and Dementia, 2012, 8, 502-512.	0.4	45
49	APOE ε4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis. Neurobiology of Aging, 2017, 53, 67-75.	1.5	44
50	Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiology of Aging, 2013, 34, 73-82.	1.5	41
51	Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral. Neurobiology of Aging, 2007, 28, 1657-1663.	1.5	40
52	Improved reliability of hippocampal atrophy rate measurement in mild cognitive impairment using fluid registration. NeuroImage, 2007, 34, 1036-1041.	2.1	39
53	Patterns of Cortical Thickness according to APOE Genotype in Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2009, 28, 461-470.	0.7	38
54	Atrophy Rates in Asymptomatic Amyloidosis: Implications for Alzheimer Prevention Trials. PLoS ONE, 2013, 8, e58816.	1.1	38

#	Article	IF	CITATIONS
55	Genetic Influences on Atrophy Patterns in Familial Alzheimer's Disease: A Comparison of APP and PSEN1 Mutations. Journal of Alzheimer's Disease, 2013, 35, 199-212.	1.2	36
56	Repeatability and Reproducibility of Measurements of Femoral and Tibial Alignment Using Computed Tomography Multiplanar Reconstructions. Veterinary Surgery, 2015, 44, 85-93.	0.5	35
57	Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation. PLoS ONE, 2013, 8, e70059.	1.1	34
58	Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiology of Aging, 2018, 63, 22-32.	1.5	31
59	Clinical application of measurement of hippocampal atrophy in degenerative dementias. Hippocampus, 2009, 19, 510-516.	0.9	30
60	CSF amyloid is a consistent predictor of white matter hyperintensities across the disease course from aging to Alzheimer's disease. Neurobiology of Aging, 2020, 91, 5-14.	1.5	30
61	The Value of Hippocampal and Temporal Horn Volumes and Rates of Change in Predicting Future Conversion to AD. Alzheimer Disease and Associated Disorders, 2013, 27, 168-173.	0.6	28
62	Safety and efficacy of losartan for the reduction of brain atrophy in clinically diagnosed Alzheimer's disease (the RADAR trial): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2021, 20, 895-906.	4.9	26
63	Increased hippocampal atrophy rates in AD over 6 months using serial MR imaging. Neurobiology of Aging, 2008, 29, 1199-1203.	1.5	23
64	Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 631-642.	1.2	20
65	Differential hippocampal shapes in posterior cortical atrophy patients: A comparison with control and typical <scp>AD</scp> subjects. Human Brain Mapping, 2015, 36, 5123-5136.	1.9	19
66	Automated Measurement of Hippocampal Atrophy Using Fluid-Registered Serial MRI in AD and Controls. Journal of Computer Assisted Tomography, 2007, 31, 581-587.	0.5	18
67	The age-dependent associations of white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer's disease. Neurobiology of Aging, 2021, 97, 10-17.	1.5	18
68	Increasing Power to Predict Mild Cognitive Impairment Conversion to Alzheimer's Disease Using Hippocampal Atrophy Rate and Statistical Shape Models. Lecture Notes in Computer Science, 2010, 13, 125-132.	1.0	18
69	Circulating Metabolome and White Matter Hyperintensities in Women and Men. Circulation, 2022, 145, 1040-1052.	1.6	17
70	Prevalence and Cognitive Impact of Medial Temporal Atrophy in a Hospital Stroke Service: Retrospective Cohort Study. International Journal of Stroke, 2015, 10, 861-867.	2.9	16
71	Memory complaints and increased rates of brain atrophy: risk factors for mild cognitive impairment and Alzheimer's disease. International Journal of Geriatric Psychiatry, 2010, 25, 1119-1126.	1.3	15
72	A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset. Neuroinformatics, 2017, 15, 215-226.	1.5	14

#	Article	IF	CITATIONS
73	Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change. Neuroinformatics, 2020, 18, 429-449.	1.5	14
74	An Event-Based Disease Progression Model and Its Application to Familial Alzheimer's Disease. Lecture Notes in Computer Science, 2011, 22, 748-759.	1.0	13
75	Associations of β-Amyloid and Vascular Burden With Rates of Neurodegeneration in Cognitively Normal Members of the 1946 British Birth Cohort. Neurology, 2022, 99, .	1.5	12
76	The search for early markers of AD: hippocampal atrophy and memory deficits. International Psychogeriatrics, 2014, 26, 1065-1066.	0.6	11
77	Automated Template-Based Hippocampal Segmentations from MRI: The Effects of 1.5T or 3T Field Strength on Accuracy. Neuroinformatics, 2014, 12, 405-412.	1.5	11
78	Knight's move thinking? Mild cognitive impairment in a chess player. Neurocase, 2005, 11, 26-31.	0.2	10
79	Targeted Recruitment Using Cerebrospinal Fluid Biomarkers: Implications for Alzheimer's Disease Therapeutic Trials. Journal of Alzheimer's Disease, 2013, 34, 431-437.	1.2	7
80	Investigating the relationship between BMI across adulthood and late life brain pathologies. Alzheimer's Research and Therapy, 2021, 13, 91.	3.0	7
81	High blood pressure predicts hippocampal atrophy rate in cognitively impaired elders. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12035.	1.2	6
82	A populationâ€based study of head injury, cognitive function and pathological markers. Annals of Clinical and Translational Neurology, 2021, 8, 842-856.	1.7	5
83	Structural magnetic resonance imaging-derived biomarkers for Alzheimer's disease. Biomarkers in Medicine, 2007, 1, 79-92.	0.6	4
84	Automated brain extraction using Multi-Atlas Propagation and Segmentation (MAPS). , 2011, , .		3
85	Bayesian Model Selection for Pathological Data. Lecture Notes in Computer Science, 2014, 17, 323-330.	1.0	3
86	Losartan to slow the progression of mild-to-moderate Alzheimer's disease through angiotensin targeting: the RADAR RCT. Efficacy and Mechanism Evaluation, 2021, 8, 1-72.	0.9	3
87	Does registration of serial MRI improve diagnosis of dementia?. Neuroradiology, 2010, 52, 987-995.	1.1	2
88	Presumed small vessel disease, imaging and cognition markers in the Alzheimer's Disease Neuroimaging Initiative. Brain Communications, 2021, 3, fcab226.	1.5	2
89	Familial British dementia: a clinical and multi-modal imaging case study. Journal of Neurology, 2022, 269, 3926-3930.	1.8	2
90	Sex-related differences in whole brain volumes at age 70 in association with hyperglycemia during adult life. Neurobiology of Aging, 2021, 112, 161-169.	1.5	1

#	Article	IF	CITATIONS
91	Nonlinear Elastic Spline Registration: Evaluation with Longitudinal Huntington's Disease Data. Lecture Notes in Computer Science, 2010, , 128-139.	1.0	1
92	[P2–545]: VASCULAR AND EARLY LIFE INFLUENCES ON CEREBROVASCULAR DISEASE IN INSIGHT 46: A SUBâ€6TUDY OF THE MRC NATIONAL SURVEY OF HEALTH AND DEVELOPMENT (NSHD) BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2017, 13, P851.	0.4	0
93	[O3–10–04]: SIMULTANEOUS CHANGES IN BLOOD PRESSURE, COGNITION AND BRAIN VOLUME IN AGEING, MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P924.	0.4	0
94	[P4–524]: WHITE MATTER HYPERINTENSITIES ARE ASSOCIATED WITH HIPPOCAMPAL ATROPHY RATES AFTER ADJUSTING FOR OTHER VASCULAR MARKERS IN PREDEMENTIA DISEASE STAGES. Alzheimer's and Dementia, 2017, 13, P1547.	0.4	0
95	[ICâ€Pâ€087]: SIMULTANEOUS CHANGES IN BLOOD PRESSURE, COGNITION AND BRAIN VOLUME IN AGEING, MI COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P70.	LD.4	0